©Copyright 2011

Hao Li

A Model Driven Laboratory Information Management System

Hao Li

A dissertation
submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree:
Medical Education and Biomedical Health Informatics

UMI Number: 3452718

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3452718
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

Pro(Quest
— _—

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by
Hao Li

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examination committee have been made.

Chair of the Supervisory Committee:

%”D@%

JamesF. Brmk‘Igy

Reading Committee:

Eﬁ @M

(_/ JamesF. Brlnkley

R/ e

Ira]. Kalet

/ﬂ/%/%w

Linda G. Shapiro

Date. 2 /28 /80//

In presenting this dissertation in partial fulfillment of the requirements for the
doctoral degree at the University of Washington, I agree that the Library shall make its
copies freely available for inspection. I further agree that extensive copying of the
dissertation is allowable only for scholarly purposes, consistent with “fair use” as
prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this
dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road,
Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted “the right to
reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of

the manuscript made from microform.”

Signature dé%:——‘:’ﬁ‘/

Date 2/28/20//

University of Washington

Abstract

A Model Driven Laboratory Information Management System

Hao Li

Chair of the Supervisory Committee:
Professor James F. Brinkley
Department of Medical Education and Biomedical Health Informatics
Biomedical research scientists need more robust tools than spreadsheets to manage
their data. However, no suitable laboratory information management systems (LIMS) are
readily available; they are either too costly to build or too complex to adapt. This thesis
presents the architecture, design, implementation, and a prototype of a model driven
LIMS, called Seedpod. Scientists, with the help of biomedical informaticists, develop a
knowledge model of their data and data management needs in a knowledge management
tool called Protégé. Seedpod then automatically produces a relational database from the
model, and dynamically generates a web-based graphical user interface. Seedpod can be
used for multiple scientific research domains since only its knowledge model contains

domain-specific content. It decreases development time and cost, thereby allowing

scientists to focus on producing and collecting data.

TABLE OF CONTENTS

LiSt Of FIGUIES c.uvurvuevenrnrrersnnssssssssersesssnsssssssassasssnee vetnsseensnessnesesstessassssssnasesass iv
1. INtroductionceeueevversssressrssssnsscnsenns N 1
1.1. Motivation ... OO 1
1.2, Problem STAtEMENLccouvsruenisesesninernnmnsssrssssssssssmssssssssssssssisssssssssssssssssssssssssssssssssossons 2
130 APPIOACH.....cveecererrerrenreirssssssesiesssssssssrssnssssssssssesssenssssssssassassssssssssssassasssssssessessssssssssssassssess 3
1.4, TRESIS OULHNE c.uvvrrvrresriervinenninsnsssissnssnnssssssssssssssssssassessssssssssssssssssssassssssssssssesssssssssssssssssass 3

2. Supporting Scientific Data MaNagemeNtccvvveverrerrrsnmsssssessesssessssssssssssssessassssssssssssassasssses 5
2.1. Challenges of Scientific Data Management for Researchersnecssnisniseene 6
2.1.1. Example #1: Single Unit Recording at the Ojemann Labccccveuerecrescinisennns 6
2.1.2. Example #2: Lupus Study at the Stevens Labcccceeurvurevuernncnn. vevesnssssnsrssases 9
2.1.3. Section SUMMATIY.......ciiieniniinsninisnsismsissmimsssimissssosssosens 10

2.2. Challenges of Data Management for INfOrmatiCiSts........ceesusssssrsmssernsssssssssssssssssssess 11
2.2.1. Custom solution development...........ccceeersresrneessenssssssusscossonnsences vevnsesnesranes 11
2.2.2. Application evolUutioncccccuerervnrnrcnrssrsensrsssesesssssssnssssssonaseenes .12
2.2.3. Supporting multiple 1aboratoriesuiisiinisssnississississississasssssassians 12
2.2.4, SECLiON SUMMATY wucvvervissnnnsnsnsnnrssnsesnssesssssessssssssssssssnsssssssssssssssssesssnssssssssssnsnssssessssnes 13

2.3. System Requirements and Evaluation Plan............iissncmsinsnssessessesensnsene 13
2.3.1. Data management reqUirementseeeeeecrcuenes trenrveratessnensenssansasiasaraseses 14
2.3.2. Development reqUIrEMENLESccccevusussesrssisenssmsmssnsrmssissssssssessssssssssssssssssossssans 14
2.3.3. Evaluation plan....... OO OO 15

24, CONCIUSION cuuvurerreerssirssenssssssesssssssssssasssssrsssssassssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssses 15

3. EXisting LIMS SOIULIONSccccvecrsvsnenssressnennrsnssssnes veressesseressstetststesassassnasesastesesnssssastsnasess 16
3.1, CUSEOIM SOIULIONS ...uerverisirsssrassssessissnnasensississssssssassssssssssssssssssssssasasssssssassasessssssssssssssssns 16
3.2, Off-The-Shelf SOIULIONScerverieirsrrrrsernissrisississssssssssssisesssesssassssssssssssessssssssssssssaes 17
3.2.1. EXCel SPreadsheet......miircniisssssississisesassissinsisiisssssssssssssssssasssssssssssssssons 17
3.2.2. Instrument maker SOIUHIONSceceeeiesesississinnsesissinissisissssssssssssssssssesssssssssassens 19

3.3, Customizable tOOIKItccmisiiinminrsississssssisinissisemnsneisnssssssssssssssssssssrsssssssssssss 20
3.3.1. Ipad Electronic laboratory notebookcccoomrcssisnsisivsnrnrisrssseniseseersesssnssssssens 21
3.3.2. WIRM .ivciiiisininnsnnsiniiniisnsmsniinicsssssiiisssssssssssssssmsassssssssssssssosassssossssnsonsssssssassnsonsorans 22
3.3.3. CELOceecrrcrnenesaernarmsnsssssnsstssssnsssssmasossssssssssssssssosssssassssosssssssossasessssssssssssssessssssnsessoss 23
3304, NEUFOSYS ucviisssnsisvnsiisissnisisiissssissnssisssssssssiissessssnessssssssssssssssssossossssissssssssssssenssaisnsasass 24

3.4. Model-DIriven APProach ... 25
341, TErANO0dE ..c.ivuiesreirnsnisssssessssisesssssssssssssssssssessssssssssassssssssssasssssssssssssssssrssssssssssssons 27
3.4.2. ManyDesSigns POTTOfIN0ccucverirrernssissssssssssscsssussusseseusssssssssssnssssssssssssssssssssssossons 29

3.5. Conclusions.......cccecoruueene. rereteses st sR SO RsesES s R st s s n s s aSSR SRS RS 30
3.5.1. Summary of existing solution and approachescssrecsssisecsirsisinns 30
3.5.2. The Seedpod Model Driven Approach ressssesssrsa bt s snessrssass st asesse et 32

4, Seedpod (A CaSE SLUAY) c.cvrvrrrrnrrrerersssnersnsisissessssssssssssssssises 34

4,1, MOAEl-DIiVen ATCHILECIUTIE cuouvvieiserictrerersnsssorsssetssssssrssesssssssssssasssssssssossansnsssensossssonsassss 34

4.2. Modeling USING PIOtEGE........coccumvvvsvurcurrneessssssissssassassssssssssssssessssasssssssssssssssssssassssssssses 36
4.3, Model Transformationoeccrcerrssssnnrsssssesssssssssssmssssssssssssssssscssesssarsssssssssesssssssses 42
4.4. Relational DAtabase......cccvverencersressrernrsnssssssnmsssssssseasssssmsssossssssssssesassssssssnsssssssssssssssossosses 43
4.4.1. Data tables and VIEWScc.ccvcrmeressnseinsississssisisisssissssssssessssssssssessassasssses 43
4.4.2. Meta-data SLOTAZEcvcrrvsvecrssrnissnrssssssisssssssssssssssassasssissssissssssssssssssssssssssssssssns 46
4,5, WED SErver APPICALIONcccvureucvrrcsrensnennrnisssssssssssssmsasessessessssssassssssessassssssssssassssssssssases 47
451, “MOAEl” ot ssassss s aasens 48
4,52, CONLLOLIET .ucvurcrrississicnnrcnretsnnssssasssssssesessesissssssassssssssssssssassssssssssssssnssessssssssosssssce 49
453, VIBW covvirniacnssnsnssssssnssrssnorsosssssssnssssssssssssssassnssssonssssssssssessssssonssssssssssssssssansssssasessssassnss 51
4.6. Extending and Customizing SEeAPOd.ccuveuemrrumnusssissiseusninsesseressssissssesesssnssssssssssns 53
4.6.1. CUStOMIZable WIAGELS.....covrecrrerrrcinrrrnssrssenssrssnnesssssissinssmessssssssosssssssssssssssssssossoses 54
4,6.2. Extensible object definitions.......vccsirssrssnsnnsssnssississsisssssmsssssessassessrsssssssssassases 56
4,63. Extensible page layoutcccocvnicsnecsrnnennennssisiensinsninsnsnssssssienssnssssssssssssnsens 56
4.7. Application Workflow ceturbestes st e Rt e s s st RS sR s s R Rt s s e s s e asrsaasan 57
4.7.1. Step 1: create the Model..........ocmiscrscessnisirsessessisssicsssssissnssssesesssscscesns 57
4,7.2, Step 2: Transform model and create databasecocceerereercenrenresrrereseesrsnnnes 58
4.7.3. Step 3: Deploy Web appliCationciceussrosmuserissssissisonssnssssssssssssssssssscssssssssene 58
4.8, RESUILS.erueceiircrnsiiinsissciscsinsinsessissssssssssssssssisssssssssessssssssssssssssissssssssassasssssassassssessssssases 60
4.8.1. Steven’s Lab Protégé Modeluvvimnscrninsessissnssissensesisssnessnssisssssssssssssssssssses 61
4.8.2. Web-based USer INLEITACEcovvemmerrmrmnississsnsssnnniasssissssisssissssmssssssssssssssssssssssssassoses 61
4,9. Conclusion.......c...... seeeseesresaest bR r s E S esR s s s R s b S RE SR sn s s s s E RS Res 64
5. Frame-Based Model to Relational Model Transformationceerssresessvssennesessssessenes 66
5.1. Meta-Model and Model ArChiteCtUTEccevmverrrerrmrenrsssensssrrissssasesssssssssnsssssssssessosasees 67
5.1.1. Four modeling layers of OMG.......cccovrriniensisesmrnsisecsisssisssssrsssssessessssssssisesssssssanes 68
5.1.2. Definition of a relational Model..........cccoeumeecrevrrvsrssssrcnnnrisennisisrsnneessersnnsssssssesessens 69
5.1.3. Definition of a frame-based model........coueveerrirsrecrrvsrrnrcenrnseccnrecsrnssrsesesesseenes 70
5.2. Transformation RULES...........eiessecsmsenmnsrsssssssissnenssssssssessissssssssnsessassssssssssssssssssssssssses 72
5.3. Implementation DEtailscccereerrnmmsnresssornusnssssnusssssssrosssnsesssssssssssnsnssesssosssssssssssnss 75
5.3.1. Data SLTUCLUIC....ccuciirresisnsirssisnisintiisiissiesssterssinsisisssnssssssssisssossssssisssssssssassssssssassses 75
5.3.2. Algorithm and implementation detailscoocvvcorevervcunsisisisscsensessrssisrissensinnes 77
5.3.3. Seedpod specific implementationcccncenisissnissrssssssssessisssssnsssssrsessssanss 84
5.3.4. Executing Proté€gE€2RDB..........ccccourmrisnnirsnmsessnsneinissesssssssmessssssssssssssssnssessssssassns 86
54, RESUIS.cvuvirscviscnsinissesssitsississsisisssssssssissinsssssssssisssssssssssssssssssssssssssssssssssssssisssasssaossanes 87
5.4.1. Output part 1: database definition ... emeisiiniiscnissinissisescnsissiseessessises 87
5.4.2. Output part 2; Mapping meta-data.........cccuemesninsisnisnssinissasissessssnssssensessasens 93
5.5, CONCIUSION.c.cvrnrurrrrrnnssissrassasirssssssssssssssssssssssssssssesssassasssssssssssssssssasssssssasasssssssssassassssossons 95
6. CritiCal ANALYSIS....cvcsererrerrressrsnisensrneisrssssssssssssesssssssesssssssssssssssassssssssssosssssns pevesessnssassasnasassssesane 97
6.1. Two Seedpod LIMS eXAMPIESccvvrirsimssesearmrssmssussssssssecssesssssssssessssssssssessssssssssonsssassasss 98
6.2. Evaluation against the requirements.........cecoiirsissrsisnusiescisississsersissssessissssessessssnns 98
6.2.1. Rl riciiicicincnsnnnnissicssniiisesssossssssssasessimsesisstisssrsssssssnsssssssssssssssssosssssssssssssnsnsssansssssseses 98
6.2.2 R2 cstitstiniiiiisssnnsiicssssinnscssssisssisssssssisesissserssssssssssnnsssssssssssssasssassssssssssssssssssssssons 100
6.2.3 R reeiieieisnneennicnnneresnessssensasesssesssassasssesssessses sanssssnttesatssestossstessetsesssssassasessssaassorssssssenes 101

6.2:4, RAursirsrnsniincnnniissniissiisioisisissiiisssissossscsnsssssssssesssnssssassssnsonse 102

6.2.5. RS teiirirrerssereisssssvesnssssssesessassessssnsessssassessssssnesssansosssssnseressassesssssssssessrsnssressssanssssassannons 104
6.3, CONCIUSION cuverrrrrrrrrrrrrenisiesivsssscsesssssssssssssssssssessssssasassssosssesssssssssssessssasassosossssasnensssnssss 106
7. Conclusioneevevreeene ereteseshetetee e aebe st s AR A e e e RSO eEa S e R SRS RS SR s RO bR e RO RS R R eSO R R R e es 108
7.1, CONTIDULIONS ...eecvererrrrrerererennsisssssisssssesssesensasnsssassesssssesesssssssssesssossssssssssssnssonsssssasasans 108
7.2. FULUTE WOTK ucuverrrervnrrenreessssssssssssssssssssssssisssssssssssssssssesssossssssssssssssssassssensssssnsasnsasassss 110
BIDLIOGIAPRNYocurverrcrenereisissicsissnsrssnsrissssesssssssssssssssssssssssrsssssssssssssssssssssasssssisssssssssassssssssssssssersasess 113

jii

LIST OF FIGURES

Figure 3.1. A sample screenshot of experiment data captured in an Excel spreadsheet....... 18
Figure 3.2. A sample screenshot of LabCentrix solution for ACME Laboratories..........cc........ 19
Figure 3.3. A sample screenshot of IPad........cc.eeeeevesruenmmnsisisisisnnrnnrnnisssssssssssssssssssssssssessesssssssasss 21
Figure 3.4. A sample screenshot of WIRM’s web graphic user interface...........couevsseeeecenennee 23
Figure 3.5. Two sample screenshots of CELO’s web based user interfacecccrvvurirnreunce. 24
Figure 3.6. A sample screenshot of NEUTOSYS.ccuvimereusisissinsrnmrsnsssssssissssssssssssssssssosssssssses 25
Figure 3.7. A sample screenshot of Teronode’s design environmentcveeevcerncursrssisecsanns 27
Figure 3.8. A sample screen of ManyDesign’s data update formceccvevsvsencrssersnississeees 28
Figure 3.9. Custom solutions, COTS, tool kits, and MDA compared.cuucneveusserrsscisecsnns 31
Figure 4.1, Seedpod architeCtUre.........ouvvireceseeseinsssrssssssnsesssrascsssssssssssssssssssssssasesssssssssessesssas 35
Figure 4.2. Component platform and domain dependency..........oincscssenscssssssissssnnes 36
Figure 4.3. Comparing meta-class :STANDARD-CLS and :RDB_CLASSccccoesurersecrseresessinncns 37
Figure 4.4, Facets Of :RDB_CLASS.......ccucunmuscnssemcesssmsssssssssssssssssssssssssssssssssessesssssassssssossassssss 38
Figure 4.5. Facets Of :RDB_SLOTcccovurmmsmsnsssmssssssssssmmsessssssssssssssssssssmsssssossssssssssssssssssssssasssosss 39
Figure 4.6. Two screen shots of the Protégé modeling environment.cocveercesrrsiceneesennes 40
Figure 4.7. Attributes of database table :RDB_CLASS.couummresscrscssnessissssssssssssssssssssrssssces 44
Figure 4.8. Attributes of database table :RDB_SLOTccoccunremsessenssmssssssssssessesssssssssosasesossiess 45
Figure 4.9. HTML form and view WIidZets.......uueveccrcernsissmmusnisssisscsscsssssssssssssssssssssassssssssssssses 52
Figure 4.10. Web server configuration in Web.Xml..........ccocommvmvvirssirvinvenusscenssesssisssssecssrsens 59
Figure 4.11. A screen shot of the Lupus Lab model...........cuinvcnciecscensissscsesssssssssanins 60

iv

FIgUre 4.12. USET 10g iN SCIEN......ccurrimrrninsesssissinssississeassessssssissssassssessssssasssssssssssssssssssssssessssans 61

Figure 4.13. Choose a class type for creating a new instance.ccsssecrsnrssrssessessessssene 61
Figure 4.14. Create a NEW INSLANCE ...ccvvciiiinminnnsisisisissssiissssssssssssiessisssssssosssiisessssssssssessans 62
Figure 4.15. An instance VIEW Page........coienivcsmscsssnsssssssmnossssnssissssssssasssissssassasosssssssans 63
Figure 4.16. Eiting a relationship.cccccereerevnmmrenninnsnsrnnnessmsninsnnissssssssssssssssessssssssssssssessessssss 64
Figure 4.17. Creating a relationship from existing instances.eceerrerseceissennrsnrssrssessssesene 65
Figure 5.1. Four layer model architecture.........ccoeesuverevrerrenreescsernnenns vesssessassasensrssainas 67
Figure 5.2. A screenshot from Protégémmnsissssssssssssismussmssssssssssssssssassssssssssssssssssssss 71
Figure 5.3. Transformation of M0, M1, and M2...........eeernersseressosserensossnsssssssssssssassassassasessssssssess 72
Figure 5.4. Data objects in the transformation JAVA implementation.ceceerersuesissssseaens 76
Figure 5.5. JAVA code sample from KB2DB transformation.c..eeeeeesesecsssrnvssssssesssessesecss 78
Figure 5.6. Define a relationship with and without an inversec.ococeciiccrnnsseessiesssiescnnen, 79
Figure 5.7. An example of reifying a one-to-many slotc.cveeemesrcsissssssssussesssssssssissessessons 80
Figure 5.8. The difference between vertical and horizonta'l fragmentation.........ccoecerveecvnnne 81
Figure 5.9. View definition with inheritanceecressscsesnennsissisnisscescensinssssnssssssssassscses 83
Figure 5.10. Value type mapping vevesstesssssa st s st s st s e SRt s E e RS bR SRR s bR R b s RSB eSS R0 n 85
Figure 5.11. Seedpod MeNuU PIUG-iN c..vveeeeveirisirsssssrsssisssssssssssissassas 86
Figure 5.12. A screenshot of Steven’s Lab Protégé modelccoovuvvvnusensisissesenrssnsssssissesennen, 88
Figure 5.13. Sample transformation result of a SQL table definitioncceccunvrruscereeccenncneces 89
Figure 5.14. Sample view definition for a non-leaf concrete classooeuvscnnecrcrccescrscusennecn. 90
Figure 5.15. Sample foreign key referential integrity constraint definitioncccosuueuuse. 91
Figure 5.16. Sample SQL definition for an association tableccuvmiiccssinieisscsscnsns 92

v

Figure 5.17. Sample SQL result of a many-to-many relationshipc.cvirvcivcenccnisvsessnne. 93

Figure 5.18. Model Map SQL definition sample ... 94
Figure 5.19. Screenshot of the :RDB_ATTRIBUTE database table..........ccouuvvvrevurveusssmsirsrinnncs 95
Figure 5.20. Screenshot of the :RDB_CLASS database table.........cccoounrvcurverererisirensernsenninns 96
Figure 6.1. Extending class definition with inheritance........vcenscrsenccsnisnciissanens 105
Figure 6.2. Comparing Seedpod to existing SOIULIONSc.cvsmrcrsemesenississsunisssssssssessscssssanee 106
Figure 7.1. Transformation and Seedpod server are domain-independent............cococvuucce. 110

vi

ACKNOWLEDGEMENTS

This thesis would not have been possible without my advisor, Dr. James Brinkley,
for his guidance, patience, trust, and wisdom through this near-decade journey. I have
been incredibly fortunate and honored to have Dr. Ira Kalet and Dr. Linda Shapiro on my
committee. They showered me with encouragement and inspiration that I needed both
professionally and personally. I am indebted to Dr. Peter Mork and Dr. John Gennari for
their collaboration in the model transformation component of the project, which became
an impetus for my thesis project. Special thanks to Dr Micki Kedzierski from the Pharmacy
School who shared with me her courage and provided unconditional support. My
supportive colleagues at MITRE have inspired me to finish this dissertation. I cannot
appreciate my dear friends enough for keeping me sane, balanced, happy, and optimistic in
this endeavor. Last but not least,] owe my deepest gratitude to my family for their
continuing love and support, especially my parents Dr. Lian Liang, Dai-zong Li, and Patrick

Pang.

vii

1. INTRODUCTION

1.1, Motivation

In the age of exponential growth of data, scientific research has evolved from being
hypothesis-driven to being data-driven. Scientific discoveries rely on the ability to collect,
manage, analyze, and make sense of large, rich, and complex multimedia datasets (Kell &
Oliver, 2004; Drexler, 2008; Larson, 2008; Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, &
Heber, 2005). Using an Excel spreadsheet to manage experiment data is cumbersome, error
prone and time consuming, and furthermore, it is limited to tabular data (Jakobovits,
Rosse, & Brinkley, 2002; Fong & Brinkley, 2006). Advanced laboratory information
management systems (LIMS) combining sophisticated computer tools, such as web
applications and relational databases, are ubiquitous (Lacroix & Critchlow, 2003; Paszko &
Turner, 2002.; Kotter, 2001; Gardner & Shepherd, 2004). However, development of such
systems is costly in time and effort, so scientists rely on biomedical informaticists or
computer engineers to develop them.

Frequent changes to experimental protocols in scientific research further
complicate the data management problem (Jakobovits, Rosse, & Brinkley, 2002). With

current approaches to developing and managing data management systems, informaticists’

! “Informaticist” will be used in place of “biomedical informaticist” for the rest of

the thesis.

cannot make changes to the systems quickly enough to match the rate at which the
experiments change. As a result data management is interrupted or slowed to a halt.
Various LIMS research and development efforts focus on cutting development cost
and time, but most lack the ability to change for two reasons. The first is that LIMS are
developed with a tight coupling of data collection with data analysis. Data analysis adds
restrictions on data formats and storage methods for data collection. These two activities
may and should occur independently, so that more data can be quickly collected without
delay (Swenson, 2005). The second reason is that the changing components, most
frequently the data model, of LIMS are fragmented and embedded in various components
of the system (Schmidt, 2006). Changing an experimental protocol usually means making
changes to the data model. This often requires the system database, application code, and

logic to be changed throughout.

12 Problem Statement

The goal of this thesis is to develop a general and cost-effective LIMS development
methodology that encapsulates the changing components of the LIMS in a descriptive
model and automatically generates the LIMS data storage and graphical user interface

based on the model.

1.3. Approach

This thesis is based on an existing software system technique called a model-driven
approach (MDA) (MDA, 2010). The model is a descriptive representation of a LIMS including
data elements, application logic, and presentation attributes. The application engine
automatically translates the model to a relational database model. The web application
server translates the model and dynamically generates a web-based user interface for users
to manage the data in the relational database. The advantage of this approach is its cost
saving. The unique element of this approach is the separation of domain-dependent

knowledge model from domain-independent programming code.

14, Thesis Outline

The thesis is laid out as follows. Chapter 2 provides a detailed description of the
scientific data management problem with example challenges from both scientists and
informaticists and a list of requirements for the system. Chapter 3 evaluates existing LIMS
development approaches and makes an argument that MDA is the superior approach, but a
better MDA approach than existing methods is needed. Chapter 4 details the design,
implementation, and result of a model-driven LIMS prototype called Seedpod. Seedpod
contains three components: a LIMS model developed in a knowledge management tool
called Protégé (Stanford Center for Biomedical Informatics Research, 2010), a
transformation engine, and a web application engine. A methodology for automatic

transformation of the Protégé model to a relational model is defined in Chapter 5. Chapter

"6 evaluates the system against LIMS requirements from Chapter 2. The thesis concludes

with contributions and future work in Chapter 7.

2. SUPPORTING SCIENTIFIC DATA MANAGEMENT

The advent of scientific recording techniques has resulted in an explosion of
scientific data. Most of the significant discoveries are made in small to mid-sized research
laboratories. Data management is the foundation of scientific research and laboratory
experiments. The state-of-the-art practice in many research labs is to use basic Excel
sheets or Access on a personal computer (Anderson, et al., 2007). Managing large volume
and multimedia data with these tools is no longer feasible. Increasingly, researchers need
to collaborate with each other over geographic distances which require them to leverage
Internet technology (Gardner & Shepherd, 2004; Jakobovits, Soderland, Taira, & Brinkley,
2000). Informaticists resort to a mongrel cocktail of infrastructure and available tools to
create solutions that are difficult to maintain and change (Swenson, 2005). Thus, LIMS for
data management remains a bottleneck to biomedical research.

Information management challenges can be categorized according to whether they
deal with data management within a single scientific laboratory, data sharing among
interdisciplinary labs, and knowledge sharing. The focus of this thesis project is data
management within a single or small group of labs: to capture, organize, and allow access
to the data. The challenges and issues of data management in a university research setting
have been well studied (Anderson, et al., 2007). In sections 2.1 and 2.2, challenges of data
management are described from the perspectives of researchers and informaticists. These

challenges allude to the requirements for a new solution in Section 2.3.

2.1. Challenges of Scientific Data Management for Researchers

Small to mid-sized biomedical research labs are in need of more robust data
management support beyond spreadsheets, but they have limited access to informatics
support. This section describes the Ojemann Lab at the University of Washington Medical
Center (UWMC), Department of Neurosurgery, to illustrate the main issues that biomedical
research laboratories face. A second example is provided from the Stevens Lupus clinical
research lab at Seattle Children’s Hospital. Both of these examples are based on the
author’s observations. Whether it is clinical research or basic science research, many of the
challenges faced by these small to mid-sized scale university research labs are
representative. In addition to technical challenges, challenges that enable stakeholders to
work together are discussed as well (Anderson, et al., 2007; Jakobovits, Soderland, Taira, &

Brinkley, 2000).

2.1.1, Example #1: Single Unit Recording at the Ojemann Lab

The Ojemann Lab studies the relationship between language memory and
functional organization of language related neurons in the temporal cortex of the human
brain (Ojemann, Schoenfield-McNeill, & Corina, 2002). This is the only laboratory in the
U.S. that records from a live human brain using an electrophysiological recording
technique called single unit recording (SUR). Unlike other non-invasive recording
techniques such as functional magnetic resonance imaging (fMRI), electroencephalography
(EEG), and positron emission tomography (PET), SUR has the advantage of high spatial and

temporal resolution for direct correlation between the stimuli and the observed activation.

Therefore, SUR experiments produce valuable data giving insights into the functional
organization of the language cortex that other techniques do not.

Ojemann’s SUR experiments take place during epileptic resection surgeries.
Tungsten electrodes record extracellularly from the cortical areas of a human subject.
During a surgery, the patient subject performs a sequence of language tasks, or trials, while
the microelectrodes record simultaneously from the temporal lobe of the brain. The
language tasks are preplanned using a psychology experiment design and operating system
called E-Prime (Psychology Software Tools, Inc). Each task contains one or more stimuli
items that may be presented in textual, auditory, or pictorial forms. The patient then
responds by either identifying or remembering the stimuli according to instructions for
each trial. If any language errors occur, the subject’s responses are documented on a paper
log sheet. Meanwhile, small electrical signals that mark the stimuli onset time and patient’s
response time are sent to another computer running software called Chart. Chart is a
software program developed by ADInstrument (ADInstruments), which is commonly used
by electrical physiologists to record from neurons. Chart records simultaneously from
signals produced by multiple channels of the electrodes at high resolution.

Data organization and management take place after the experiments. The raw data
are archived on CDs. The saved Chart files with signal recordings are filtered and processed
using a MatLab program to remove artifacts and signal noise. Time series data are parsed
for individual neurons recorded by multiple microelectrodes. They are then saved into new
individual files. Time series files for stimulus onset and patient responses are also saved

separately from the neuron responses. Each of the electrode time series files is processed

by a MatLab spike sorting program. This program differentiates the neurons that an
electrode records from by signal amplitudes (Cho, Corina, Brinkley, Ojemann, & Shapiro,
2005). Individual neuron time series are then saved. Finally, the neuronal time series are
parsed by trial onset time series, and the frequency of each neuron’s response to each trial
is calculated. ‘Through this process, some of the data are processed by PowerLab
(ADInstruments) and some are processed by a data analyst who writes signal processing
programs, which may perform better to meet the needs of the lab. Multiple visualizations
of the neuronal signals, such as raster plots and neuronal response histograms by different
time bin sizes, are generated to facilitate data processing. At the end of an experiment,
several different kinds of data artifacts are generated and stored in files. Sometimes,
multiple formats of the files are stored for various researchers that use different
computing platforms such as Mac or PC. These artifacts are organized by experiment
protocols and subjects. Each subject directory takes up to 1.4 GB on a remote hard drive, in
addition to the CD archives, and multiple copies of the data are stored on local folders of
different researchers. The files names are concatenated identifiers assigned at each process
step to help researchers recognize them quickly. Other data collected or derived through
the experiment such as patient demographics, experiment notes, frequencies are
organized in Excel spreadsheets.

Research staff at the Ojemann lab must be very meticulous about data management
using Excel sheets and ad hoc methods. They must coordinate to work with each other
with a complicated workflow. Data access is fragmented. Data are collected from different

instruments and sources, and then stored in multiple media, such as spreadsheets, CD

archives, remote file management hard drives, and paper lab notes. Different researchers
in the lab use different platforms such as Windows versus Mac. Sometimes files need to be
saved twice for the different platforms. Multimedia data metadata management is not
available. This makes searching for files difficult if not impossible. Most of the data are
stored on local hard drives, making data entry, remote access, data sharing, and version
control between several people prone to error and non-feasible. Along with this type of ad
hoc data management, disparate users may or may not conform to file naming conventions
or other data entry standards, which lowers data quality, correctness and completeness. As
is inherent to non-structured data storage, search and retrieving multimedia data is
manual and time consuming. With increasing data size, the amount of manual work to

clean up data for analysis becomes exponentially more cumbersome.

2.1.2. Example #2: Lupus Study at the Stevens Lab

Dr. Anne Stevens is a clinician and researcher at Seattle Children’s Hospital. She
studies maternal mitochondria genetic inheritance effects in Lupus. Akin to Dr. Ojemann’s
Lab, she has a staff of researchers working for her gathering data from various sources.
Data are consolidated and organized into Microsoft Excel spreadsheets from Children’s
Hospital databases, interviews with the patients, and Fred Hutchinson Cancer Research
Institute (FHCR). It is with FHCR that she shares her subject data. Data from Children’s
Hospital are collected from three different databases due to disparate data storage from
different clinics and departments in the hospital at the time of the interview. Data quality
control is challenging when multiple researchers need to access the same data from

various locations. Managing multimedia data is not a huge problem. However, like Dr.

10

Ojemann’s Lab, querying data from various spreadsheets for data analysis is cumbersome

and time consuming.

2.1.3. Section Summary

This section describes the role of scientific users with LIMS. They plan, conduct and
manage experiments. Their interest is in research, not data management or information
technology. They are intimately familiar with the data structure and domain knowledge.
They prefer to have control of the data (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, &
Heber, 2005) . They are often willing to use any solutions that help them manage data even
if the solutions are inefficient. They are limited in financial resources, technical staff, and
time invested into LIMS development or maintenance. Their willingness to compromise
with the use of cumbersome tools is justified by the control they gain by using more simple
solutions (Lazar, 2000). This eventually becomes an issue between scientist users and LIMS
developers when user involvement in design and implementation of the system is
minimized.

From the two examples provided in this section, despite the differences in their
research fields, there are common data management issues. These challenges are part
technical and part organizational. The technical challenges involve scaling the solution to
an expanding data set. The organizational challenges involve coordinating the research

staff to better collaborate and share data management tasks.

11

2.2, Challenges of Data Management for Informaticists

Biomedical informaticists are another group of LIMS stakeholders that one must
consider when deciding which LIMS to use. Different levels of technical skill sets come with
different informaticists or IT professionals. The level of interaction between scientific
users and informaticists determines how independent scientific users can be with the
system. In this section, challenges faced by informaticists are described from development
to maintenance from an example of Brinkley’s Structural Informatics Group (SIG) at the
UWMC (Structural Informatics Group). SIG developed and maintains LIMS for Ojemann’s

and Steven’s labs as mentioned above.

2.2.1. Custom solution development

SIG has a small group of computer developers with special interests in scientific
data management. The group has built a slew of LIMS for quite a few research laboratories.
Once the systems have been built, SIG continues to maintain these systems over the years.
LIMS development is costly and time consuming. The application developers must spend a
significant amount of time up front to understand the domain science and information
program. Then they design an information system to meet the users’ needs. Once a system
is architected, the developer designs a data model which is used for implémenting a
database schema. A web-based application allowing users to manage data through a web
browser is preferred, because its development cost is low and it provides multi-user
remote access. The data management system is highly customized for individual

laboratories. Therefore, both the development and on-going maintenance is costly.

12

2.2.2. Application evolution

With increasing experience in developing and managing research LIMS, SIG
developers observed development patterns. Based on these patterns, tools with some level
of reusability were born. Reusable and customizable development modules can help to
speed up the development process, therefore cutting down development cost. The tools are
less domain-specific. However, these programming modules are too complicated for a
scientific user to grasp and use, so SIG must be dedicated to ongoing maintenance
activities.

Unlike a regular chemistry lab with a fairly routine and standardized protocol,
scientific research demands frequent change to its experimental protocol. The changes
may take place for as short as 3 months apart to a year. The data management system is
also expected to change to meet new needs of new protocols. However, evolving an
existing system is not a simple task. The database may need to change its schema and pre-
existing data. The server application that dynamically generates the web front-end
populated with data in the database may need to be modified. System evolution may be as
costly as developing from the start in terms of manpower and time. Quickly rolling out new
versions in a highly volatile changing environment is difficult given SIG’s available

resources.

2.2.3. Supporting multiple laboratories
Because SIG develops and maintain multiple laboratories’ data management
systems, it is in a unique position to reuse tools it builds for one laboratory in another. In

fact, scientists from one study expressed the need for institution-wide technical support

13

(Anderson, et al., 2007). With added laboratories SIG would need to employ more engineers
to develop and then continue to dedicate more hours for maintenance. If the projects at
SIG grew without growing the number of engineers, the time for changes to a system to
take place would become longer. This is not acceptable for scientific data management

systems, which demands frequent changes.

2,24, Section summary

Informaticists develop databases and user interface tools for scientists to access and
manage data. They study the domain science information problems and develop computer
solutions to address the problems appropriately. They are also responsible for maintaining
and evolving the applications when experimental protocols change over time. It is time
consuming and costly to make changes to an existing data management system. The

problem is compounded by supporting multiple customized systems.

2.3, System Requirements and Evaluation Plan

The challenges in scientific data management are faced by both the scientists and
the informaticists as described in the previous two sections. Their challenges and needs
affect each other. Hence, the proposed system requirements should reflect and address the
challenges that both stakeholders face, i.e. from the perspectives of data management and
system development. These challenges naturally construct a core wish list which is the
focus of this dissertation. This section summarizes this wish list in the form of system

requirements. An evaluation plan is then proposed.

14

2.3.1. Data management requirements

The following lists some of the key system requirements related to data

management as would be experienced and tested by the scientist users:

R1. The system must allow scientific users to manage large and complex
datasets for ease of retrieval and organization. Data may be multimedia with
metadata. Data may also have complex relationships.

R2. The system must support remote data management, allowing multiple users
and multiple disciplines to work together.

R3. The system must allow scientists to get involved in and contribute to the
process of the system design, development and testing process.

There are many more important characteristics that a LIMS should satisfy. These

are well studied in Anderson’s JAMIA 2007 paper (Anderson, et al., 2007). However, this
thesis’s focus is not development of a perfect LIMS. The requirements for scientific users

are made simple and sufficient to satisfy only this small key set of requirements.

2.3.2. Development requirements

The following is a list of system requirements for consideration of challenges faced
by informaticists:

R4, The system must keep development time, effort, and cost low.

R5. The system should lower the complexity to deal with system evolution.

Again, this list could be much bigger but these are two key challenges as illustrated

by the case study of SIG.

15

2.3.3. Evaluation plan

The focus of the thesis is on a methodology for developing an advanced LIMS to
resolve challenges faced by both the scientists and informaticists. The system will be
evaluated against the development requirements above based on the author’s critical
analysis. Aside from checking things off of the list individually, it is important to see the
system working fluidly. This means both informaticists and scientists can work with each
other through a life cycle of the application from planning to design, development to

deployment, and finally in customization and maintenance.

24 Conclusion

Developing an advanced LIMS for scientists to better manage their data is only half
of the challenge. The other half is to alleviate the time and effort cost on the part of the
informaticists. In considering a solution for LIMS, informaticists have become a necessary
stakeholder in addition to scientists. This chapter demonstrates the challenges from
Ojemann’s and Steven'’s groups from the University of Washington. These researchers are
representative of the targeted audience of this thesis project, which are fast-paced, small to
mid-sized university research laboratories with limited IT resources. The challenges call
for a new way of developing LIMS to fill in the gaps in which existing solutions do not
already fill. This thesis will hereon focus on a frame work for meeting these challenges in

LIMS development.

16

3. EXISTING LIMS SOLUTIONS

A desired LIMS solution would need to meet the needs of both scientific and
informatics users. This chapter evaluates existing LIMS solutions based on the system
requirements in Section 2.3. The solutions considered range anywhere from off-the-shelf
solutions with low technical requirements in Section 3.2 to toolkits that require technical
support for customization in Section 3.3. As scientific users’ demand for technical power
and their desire to have more control over the systems grow, system designs and
development naturally shift to a model-driven approach (Section 3.4). For the last two
decades, one of the main focuses in LIMS research is increasing efficiency by developing
general frameworks and toolkits. This chapter and thesis are focused on the approaches to

developing LIMS rather than any specific LIMS requirement.

3.1. Custom Solutions
Each laboratory principal investigator (PI) believes he has a unique information
management problem that deserves a custom solution. Custom solutions are most likely to
satisfy users, but they are very costly from the perspective of individual labs. From the
perspective of a scientific community, they do not encourage potential data sharing.
Customized ad hoc LIMS are built by software developers with knowledge in
database and programming languages, putting together more robust general purpose

technology such as web technology and relational databases. While the resulting LIMS

17

meet the requirements of a specific single lab, they cannot be generalized, or adapted for
other laboratories, and they cannot evolve quickly. Therefore, they require constant
maintenance by a technical expert, which is not commonly available to small research labs.
Users have much less control over data, and the maintenance effort is high. The scientists
depend on the informaticists for making changes and designs. Highly customized solutions
make it difficult to generalize the effort of the informaticists and engineers. The
development and maintenance is overly expensive in terms of human expertise and time

(Anderson, et al., 2007).

3.2, Off-The-Shelf Solutions

Commercial off-the-shelf solutions (COTS) are the second consideration, because
they require the least amount of technical skills on the part of the scientific users. They
can be broken into two camps: electronic spreadsheets such as Microsoft Excel and
solutions as provided by instrument makers. MS Excel represents general-purpose
software that has been repurposed for scientific data management. Instrument makers

provide specialized solutions, which cannot be adopted for more general purposes.

3.2.1. Excel spreadsheet
The use of MS Excel spreadsheets has become a state-of-the-art practice in research
data management. Excel is highly embraced by the research community, because it is

intuitive for users to set up quickly and begin data collection. Spreadsheets are easily

18

!:-22 > £ HAVERAGEJ[.M G18)

@jm r_coding.xls [Shared) !
| .8, _¢_ o _ E___ __F___ [I T

1 % { 1 3 5 1 itemn|
2, 84 24 40 40

3

41 38 38/80 45% [] 15| 13]

5[38 38/80 48% 3 12 2
] i 62 6280 76% q 20 29)

7730 30/80 6% ?) 17 1
(8o 8/80 1% of 4|[

9 12 1280, 15% [7

1078 6580 W% o T 3_0_‘

W8 &80 8% 1

12/ % 26780 25% 1 7

13, 3 1580 0% 70

14 () % 7|

15 15780 6% []

16 31780 51% ST | 2

17T 17780 2% 7)

1838 35780 % 73} 18}

19 11740 7% 3
20 &an 15% [
2 (2] 13% [
22 31.d6% Hean errors 430 1020 = ast
23 _parcenuge 007 0.43 012
24 5td Deviation 337, 372 15:]
%

nlgoxuo%llgnm[mn,{_ 0 {0108 .

chomnet [3 1_s _. | mmpon cpanzarem

g L TRt l,ﬂm AT | P oL TRy B e O ’:;3

* : et g BT ey et et e - 2

. . a0 o

E R — |

+ 0~

S an Tt e !

2 1 =joawr o] B i

I w—) 1

§oe AMMWW\;M/\,MMVWM”‘W o !

- A - |

3z <o oot @ 3§ !

Iw I | s %
8 ¥ st-ooe = 9 1oes V3t rart 131 Vot m}ma » sort | § i‘;ij 7}

<)ghmxh Jun—

Figure 3.1. A sample screenshot of experiment data captured in an Excel
spreadsheet. Each of the worksheets represents data from a subject. Scientists must
manually aggregate each worksheet to come up with this summary table. This Excel
spreadsheet is inadequate in capturing the neural signal data displayed by Chart on

the lower left. The signal data are recorded as a series of timestamps in a text file.

The data management complexity is not only time consuming but also error-prone.
adaptable to a domain application and give the scientific users a great sense of control over
their data. Excel is easy to learn to use and requires little technical support. However, the
complexity of the data, data types, and data volume quickly outgrow what is manageable in
Excel, as for example in Figure 3.1, in which time series data from the Ojemann lab are
stored in flat files that cannot be easily included in the spreadsheet. The Ojemann lab is an

example where concatenating parts of data and ID to form a data file name manually

became cryptic and confusing for data management longevity. When interdisciplinary

http://Dbrtiawtof.codlng.Kh

19

researchers need to work together, they start putting together a cocktail of solutions that
do not naturally work together. Excel spreadsheets cannot meet the ubiquitous needs for

network accessibility and metadata management (Anderson, et al., 2007).

3.2.2. Instrument maker solutions

The second type of solution is highly customized software provided by instrument
makers. Even though these LIMS give users a quick, direct, standardized way of managing
data, it is difficult to integrate the LIMS into a real laboratory environment where
management of workflow, billing and other data may not be captured. In addition,

proprietary data formats limit a lab’s access to raw data for developing novel analyses,

t 1S

§ %%E ACME Laboratories
Welcome, Jane T
Find Act 2 Sanrpes inLab 21
. O1RFS
Searchfor 'Ssmple Name v QIRFS_sd 2 o N o o
] D] 5 Samples a—— — ———
T T Submitted Receved QA Completed In Progress Completed
Browse - N
£} ABPropcts OtRFS O1RFS_p4. 5 Samples
[+ so1sT @ B 3sc.unnte derhero s groe o by that co smn
[+ CO1LFR(1) Sampte 1d Samgto Hame Status Pis Samgle Ham Process Step Treatmentfypo Treatment Type ¢
& 4 e0ITH(D g0 n Avaifatte 1 CAAgETved
<oz e 12 - Urecaived 2 Waling QA
B 400447 (G e (L 2 + shing QA
A @yl s §C e 3 2az e
=} GIRFS (€
& 1= in Fr=g ass L CA-AgpT ey
D& 01RFS 8118 o e)
@& o1res_ o241 < >
1@ C1RFS_83.0 Sts Fiter
1K) S1RFS_s4 (54
@ c1rrs_ss i1y
] .. Ctents
Py
e ‘s Affimty~
|'p~ Jor Affymetrix
Compatible by LabContrd™ LLC

Figure 3.2. A sample screenshot of LabCentrix solution for ACME Laboratories. The lab
conducts microarray experiments using Affymetrix instruments. LabCentrix LIMS
provides a highly complex environment that incorporates data management with lab
workflow.

20

resulting in a fragmented workflow.

To address these fragmentation issues companies, such as LabCentrix (LabCentrix,
2007) or GraphLogic (GraphLogic, 2009), provide LIMS that integrate Affymetrix instrument
datasets with other data management needs (Figure 3.2). However, the cost of these
solution packages, together with associated consulting services, is beyond what a small
academic laboratory can afford. In addition this type of solution is highly complex, and can
only satisfy the needs of a narrow niche of labs at the expense of not being general enough

to serve widely varied laboratories doing innovative research.

3.3, Customizable toolkit

The previous section demonstrates that off-the-shelf data management tools are
limited, expensive, and do not scale well. However, Anderson’s study found that while the
needs of individual investigators vary across laboratories they also have a great deal of
overlap, which could lead to shared LIMS resources and tools. Thus, this section reviews
systems that leverage these overlapping needs to create reusable components that can be
combined to achieve some amount of customization. These components make up toolkits
to be customized by either the scientists themselves or informaticists. Informatics groups
such as SIG that provide support to multiple laboratories have long observed design and
implementation patterns that could and should be reused (Jakobovits, Rosse, & Brinkley,
2002). Reusing system components leads to lowering the cost of time and resources, and

fewer engineers are required to support multiple LIMS. From the perspective of an

21

L S N b sd s3]

3 - oo
A bt L R Ve e h Lenass Tuih fegp

b v 5 AL -

[
Figu;e 3.3. A sample screenshop of Ipad. An experiment report shown in the main

page is tagged. The tags are organized in a tree structure as shown in the lower left
panel.

institution, leveraging shared resources is the preferred methodology. Security

management of these systems becomes easier as well.

3.3.1. Ipad Electronic laboratory notebook

Ipad Electronic Lab Notebook (Ipad ELN) is unconventional in comparison to most
of the laboratory management systems (Ipad, 2010)(Figure 3.3). It allows scientific users to
create experiment notebooks as they would in an actual paper notebook. Then it allows the
users to tag the different parts of the experiment notes such as hypothesis, result, and task.
This tagging feature turns a flat file into a semi-structured file. Users can then exploit the

tagged files by performing more effective searches. The obvious benefit of this approach is

22

that the system mimics the scientists’ conventional notebook recording with augmented
metadata. It can be easily adaptable for scientific users, especially those who are afraid of
adopting new technology. Experiment protocols are recorded along with the actual
experimental data, making publication and replication of the experiments feasible. The
tool allows the users to format and record data in their own way, and by being online, it
enables data sharing and collaboration. The major downside to this approach is that it does
not provide facilities for large data collection, storage, retrieval and analysis. Without a
systematic and machine-readable data structure, this tool cannot support large data

manipulation.

3.3.2. WIRM

WIRM (Figure 3.4) was developed by the Structural Informatics Group (SIG) at the
University of Washington (Jakobovits, Rosse, & Brinkley, 2002). The framework provides a
tool kit that sits in between a custom user interface and advanced open source technology
like web servers and relational databases. Specifically, WIRM provides a graphical user
interface that allows scientific users to specify their data structures. The middleware
automatically generates forms from the data structure information for data entry.
Developers create customized code, called wirmlets, which call service APIs such as Web
form APIs and database APIs to create custom behavior of the web application. Developers
are provided a set of APIs for quickly developing a custom LIMS. This solution fills the gap
between COTS and custom solutions. It allows space for developing a highly customized
solution while it keeps the cost low by using open-source technology. However, as SIG

learned over the years of using WIRM for specific projects such as the Brain Mapper

23

UW Integrated Brain Project

“’3’? Language Map Experiment Management System
ool

[Repository: bmap_repo] [User: Logln) [Group: PUBLIC)
[Main Menu] [Paticat List Stems] [Help) [WIRM Console]

Patient Browser

(et Son Oraer) @ Poum O Type OGAO# OE#
Therc are 110 patents in the database. Of these, 16 arc visible as a public demo.
The first 12 were previously published as follows:

Modayur, B., Prothero, J., Ojemann, K., Maravilla, K., and Brinkley, J.F. 1997,V ization-based ing of function in the brain Neuroimage, 6:245-
258,

Others are included to show various features of the dambase. Click on a link in the patient column to find more information about a specific patient.

Patent Type GAO# E# Side Grid Age Sex VIQ MRI Models Codes Photos Maps Names Comments

PL Stndud 9628 ES988 2 2 25 M 77 N 33 004 L 6 02m
P2 Stnderd 9538 E4445 7 27 44 M 0SSN 33 Q@M 1 6 0330 !
P3 Sundwd 9627 ES919 2 2 4 F IIN 3B 000 1 6 031

P4 Sandad 9411 E2240 2 2 32 M 92 N 2 o0 2 & 020 |
BS Smnderd 9413 E2531 7 2 3t F 94 N 22 oo L 6 oo ;
P6 Swndud 9502 EA995 2 2 18 F 8 N 33 004 1 6 02 :
Bl Smndud 9617 ES653 2 2 15 M 7L N 22 Q04 1 6 omam i

2 !

Standard 9612 E5426 2% M 9 N 6 0RIY v

BB 5426 7 22 ORI
Figure 3.4. A sample screenshot of WIRM’s web graphic user interface. This
summary page of experimental subjects is automatically generated by a wirmlet.

Experiment Management System (Brinkley, 2005), increasing requests from the users over
the years have evolved the system to becoming highly customizable and difficult to
maintain. Evolution became a bottleneck to the system because much of the custom code

needs to be evolved in tandem with the data structure changes.

3.3.3. CELO

CELO (Figure 3.5) was also developed at UW SIG as WIRM'’s successor. It is aimed at
quickly creating a database and web application at a low cost. It uses WIRM libraries in
addition to its own modules to help users create relational databases through a web front
end quickly (Fong & Brinkley, 2006). The database definition can be saved as an XML
template file, which can be reused to quickly create new databases by making

modifications to the XML file. Different laboratories can share the same database server

24

’ .
©OI Ly lab Ditsane Migetats ternet Logses - T hd € I bymlab o 0MH ity M T Idas et Paghant g X
- . w . o ~

|
|
L |
|

t

; Huntnglon Mice Sudy Home

EINTNTY

Saved S Query

Phota Ln

baned e LT Uedurs Eo smartnr Anep
Braracsey W)

ot s e adrar B
Vod e o - "

S hY
LE X B3
¥

vy
hadouern
DY PSR 4

aivy we PN RN

R R e 4

Lo (ST =
. “
fe

§
!
|
i
|
{

- 1

{

+ . ks

. N oakam L S ammae

Figure 3.5. Two sample screenshots of CELO’s web based user interface. The screenshot
on the left shows an administrative page that allows users to manage database objects
and saved queries. The screenshot on the right shows an actual data table populated
with numeric, textual and graphical data.

but create their own database space. The web application is generic; it can manage data in
various databases by inspecting its respective XML database descriptor. However, the

database description is basic and limited.

3.3.4. NeuroSys

NeuroSys is another web-based information management system that focuses on
solving the data entry problem and reducing database complexity for the users. NeuroSys
chooses the semi-structured metadata approach over relational databases, because its
developers believe that relational databases are too complex and do not work naturally
with auto-generated GUI design (Pittendrigh & Jacobs, 2001).

The users can quickly develop and record data in an ad Aoc manner through the

user interface (Figure 3.6). Behind the scenes, these components are organized in an XML

25

dytr put Saekiy T mme
" file Edt Yew Go Bookmaks Iools Window Help
. N 3 .
. ¥ 3 .- 3 . ! I
B%k 3 Rond 3 | & http frens montana eduniab-private/data_fonns) 1/Php/data_pitt php?USER_NAME: B, Search ot m
" 4YHome JBookmarks 2 The Mozilla Oiganiza @ Latest Builds
‘ 9
\ Data Logger Index
A il
Choose existing values from this colwan Or type new values into this column
MM_DD_YYYY DATE ’01_0!_2001 = |
3 STAINING [NEURON_STAINING _w] Go there |
BBT_HOSTNAME {finn cns monfanaedu] {
f BBT_FILETYPE [Gensty 3] [
BBT_FILENAME L1010 123 densty
BBT_FILEPATH [7ccbidataranavdensty v] 1
DIGITIZATION fog — Ty [
i
save and at_ |
Add A wigget | Deletewidget | AdowidgetOptions | Delete Widget Optons | Make Query Screen Mode |
f
i
|
! % 3 ¢ (B Oocument Done (0338 secs) ool
.

Figure 3.6. A sample screenshot of NeuroSys. A user can enter data into this data
form generated from a pre-existing template. The user can also add or delete
widgets from this data entry ad hoc.

structure. The structure does not have to conform to a particular XSD schema. This XML,
or parts of the XML that describes data types, can be reused for future data entry. The GUI
toolkit is rich, flexible, and expressive. However, what NeuroSys gains in flexibility in
metadata would eventually become a performance bottleneck at query time. With lack of

key integrity checks as in relational databases, data may tend to be corrupt or incomplete.

3.4 Model-Driven Approach
System evolution is inevitable in scientific data management, especially in a small
laboratory in which experiment protocols have the shelf life of less than a year. Changes

made to data objects and relationships during each evolution can cause a large amount of

http://MM.DD_YYYY.DATE

26

data engineering and code reengineering. However, this problem is much reduced in
solutions with a higher level of metadata abstraction and independence of data model from
the program code (Gray, Liu, Nieto-Santisteban, Szalay, DeWitt, & Heber, 2005). A more
formal approach to this separation of data model from business logic code is called a
model-driven approach (MDA).

A casual definition of a model is adopted here: a limited representation of a system.
LIMS models are abstractions of the LIMS system, which encapsulate concepts about the
experiments, data management, and laboratory management. Model-driven LIMS allow
users to capture their models symbolically or graphically without actual programming.
MDA allows software applications to be more flexible and adaptable by capturing what
tend to change frequently and in a predicable fashion in the application in a model. The
explicit model is interpreted at run-time, and business rules are captured as metadata
instead of program code. This allows changes to take place easily in the system. Users can
directly change the model without programming (Brown, 2004).

MDA is a powerful concept that was standardized by the Object Management
Group(OMG) (MDA, 2010). Model-driven development has a long history in engineering
where models are used for simulation, experiment management, and workflow
management in a variety of applications (Schmidt, 2006). Lawrence Berkeley Laboratory
developed the Object-Protocol Model for developing LIMS for molecular biology
applications in 1993 (I-min A. Chen, 1995). At present there are few LIMS that use MDA.
This section evaluates two solutions that the author is aware of, Teranode and

ManyDesigns Portofino.

27

e Lt Vew SVodow

Butfer ; 12 Pa oNTP R Primer B Enzyme W Water Primer A
)—K 15.0uL st 7.5ul ImW »77 ' oot m@ 57-0ut o786
=)) =) finaet) [() () =l

~»
]
~»
Tidlft
) 1} <le
i

A A B
PTEM 3/27/02 7 PTEN 3/27/02
44 /27 /1 [— e /27 /1

2 2000 2 g
g
{mas’} . 2
. f. | 0-200 bp 0-200 bp
2 Sk

ecular Size Molecular Size

2 g 200-220 bp 200320 bp

2x3 Falacaler Stae

Rage> Holecutar siee Molecutar Size

440-470 bp 440-670 bp

a3 "‘Wuwow pats
Hivy ot soten3
‘«bundam» B 4pe

Figure 3.7. A sample screenshot of Teronode’s visual experimental protocol design
environment. Each node in the graph denotes a data entry step or experimental
step. Paths between nodes denote workflow sequence. They may contain data
transformation and calculations.

3.4.1. Teranode

Teranode is a Seattle-based startup (Teranode, 2010). The LIMS is built on top of
previous research in LabScape spearheaded by one of its co-founders Larry Arnestein
(Arnstein, Hung, Franza, & Zhou, 2002; Arnstein, et al., 2002). The system c;ffers tools for
experiment data acquisition and automation. It also provides a model design environment
that allows informaticists or scientists to design experiment protocols. The system is open
and dynamic, and can be quickly integrated to work with different instrument platforms

for automatic high throughput data acquisition.

28

P olo tegou Goupetalrs |

ManyDesigns Portofino [(oo

(Vo] Prajects] Vickats [Users | User grovps
Search | Create

I
!
]

Projects > CMS Intranet > Tickets >

Update CMS-004

Basic Information
* Project CMS Intranet
Code CMS 004

* Summary Numeric data need more validations {
Description Test Lorem ipsum dolor sit amet, consectetuer 3dip sang el t

Workflow

Craationdate 19122008 __ | (40 MM yyyv) i)
Lant update data: 08022009 | (dd MM yyyy) B
Closedate _ (dMMwyy)
Bwirvase: (MM vy D
*Tvee [Maintonance] ,
«ortoty [iiun—] '
Ressuton]

Roles & responsibilities
* Reported by Marco |
nssigneato [z =1 ,
Approver .
Guard (3
The f elds marked v th (*) are requ red |

1
i
i
* State jopen M i
i
t
|
i

Classification

'save) { Save and start work) { Save and resalve ticket) / Save and close ticker) { Cancel)

L - —
Home Projects Tckets | Ugers | User greups

e

Figure 3.8. A sample screen of ManyDesign’s data update form. The form is
automatically generated based on the CMS model definition.

Teranode developed its own XML-based modeling language called Visual Language of
Experimentation, or VLX. VLX allows users to represent, annotate, and share information
about complex experiment data objects, relationships and workflow. The icon-based
modeling environment (Figure 3.7) allows testing and debugging the model with ease.
Ultimately, the VLX model is automated and executed in real time in an experiment
coordinating data entry, lab workflow, and report generation. Recorded data is stored in a
XML database. The system suffers from query and retrieval efficiency when the dataset

becomes large. Like NeuroSys, Teranode gains flexibility and expressivity by using XML.

29

However, Teranode locks down the protocol from changes before scientists start using it
for data entry. Teranode is a generalized solution that has the promise to lower cost and
time of development, while providing ease for data management in a complex laboratory
setting. It aims to serve large production pharmaceutical laboratories and it is not open
source. As of 2010, the company has shifted focus away from their LIMS development

module and the fate of the company is unclear.

3.4.2. ManyDesigns Portofino

Portofino is an open source solution developed by another privately. owned
company in Italy called ManyDesigns (ManyDesigns, 2010). Unlike Teranode, its solution is
designed for more general purpose use. Little is known in publication about the product
but from what can be implied from their website, Portofino works on top of a model that
defines a web application. It is developed for much more general purpose applications than
just LIMS. This model contains classes, attributes, relationships, user permission and
workflow. The model is transformed to create a relational database. The web-based GUI is
auto-generated for data entry, browsing and reporting (Figure 3.8). To use Portofino, users
download Portofino and install on their own web server. The server application is
configured to work with various database systems such as Oracle, Microsoft SQL Server,
PostgreSQL and MySQL. Portofino’s greatest advantage is its ability to change its Data
Definition Language (DDL) in real time. Unfortunately, information on the kind of changes
and how it treats existing data through this schema evolution is not clear from the lack of

English publications and their website.

30

3.5, Conclusions
This section provides a summary comparison between all of the four categories of
LIMS described in this chapter and weighs them against the requirements listed in 2.3,

concluding that MDA is superior to others.

3.5.1. Summary of existing solution and approaches

Four categories of LIMS solutioﬁs are reviewed in this chapter with a focus on the
five requirements listed in Section 2.3. The five requirements are captured into the column
headings in Figure 3.9. RI (data management features), refers to the system’s ability to
manage large and complex data types and relationships. 2 (multi-user remote access) is
the system’s ability to allow multiple users from a research team to access and manage
data simultaneously without version control or synchronization issues. R3 (scientist user
involvement) refers to the level of user involvement in the design and development of
their LIMS. R4 requires lowering the development time and technical cost. R5 refers to the
ease of system evolution as a result of data model changes. The rows in Figure 3.9 are the
four categories of existing solutions reviewed in this chapter. Each system is given a score
for each of the requirements. The available scores 1, 2, and 3 correspond to low, medium
and high respectively. Finally, the scores are summed for each solution group for
comparison. This section summarizes how the descriptions in the prior sections contribute

to the scores.

31

R1 R2 R3 R4 R5

Data Multi- Scientist user | Low Ease of | Total

management | user involvement | development | system

features remote time and | evolution

access technical cost

S1: Custom
solutions 3 3 1 1 1 9
S2: COTS 2 2 2 1 2
(Excel/Affymetrix) (1/3) (1/3) (3/1) (1/1) (3/1) 9
$3: Tool kits 3 3 1 2 1 10
S4: Model-driven 2 3 2 3 3 13

Figure 3.9. Four solution categories, custom solutions, COTS, tool kits, and model-
driven systems, are scored 1 (low), 2 (medium) or 3 (high) for each of the
requirements listed in Chapter 2. Their totals are compared. Model-driven solutions
are the leader.

S1: Custom solutions can provide high user satisfaction in terms of data
management and many of them already adopt a network enabled system. Users contribute
little to the development of the system as it requires high level of engineering expertise.
The cost is high (hence score 1 for low-cost) and this highly customized solution lacks
generality for ease of change. One may observe that tool feature satisfaction is achieved at
the compromise of reusability and cost.

S2: COTS solutions described in this chapter range widely from general-purposed
and low cost Excel to expensive specialized instrument maker solutions. Both of these are
considered to come readily usable by the scientific users. The two solutions are at polarity
with each other for four out of five requirements. They are both costly with the difference
being that Excel is expensive in terms of manual user labor to set it up and maintain it in
the long run as opposed to the actual cost of purchasing a specialized system. A correlation

exists between the ease of change and generalizability, which are both inversely related to

32

functionalities of a system. In either case, the users need to spend a lot more energy to
adapt the system either technically or culturally into an existing work environment.

S3: Toolkit solutions are akin to custom solutions with an aim to lower development
and maintenance cost through re-usable components. Fewer engineers are required to
support multiple LIMS. From the perspective of an institution, it is much more preferred to
leverage shared resources between its laboratories. Security management of these systems
becomes easier as well. However, tool kit solutions depend highly on skilled engineers.
Evolution of a system due to data model changes is labor intensive and complex.
Additionally, scientists are further away from the tools they are familiar with. The process
of developing the system can be unsupported and frustrating.

S4: Model-driven solutions combine the advantages of the toolkit solutions with
added focus on reusability, change management, and flexibility. In comparison to S3, they
further decrease development cost and increase scientist users’ engagement in the design
and development process of a LIMS. The model integrates the reusable components of tool
kits solutions (S3) into a declarative abstraction of a LIMS system, making it easy for fast
prototyping, especially for non-technical users. Several research studies have shown that
making changes to an information system is easier by using the MDA approach. (Hick &
Hainaut, 2003; Dominguez, Lloret, & Rubio, 2002; Estrella, Kovacs, Goff, McClatchey, & Toth,

2001).

3.5.2. The Seedpod Model Driven Approach
The general trend in LIMS development and research is focused on lowering

development cost and time by generalizing some aspects of the system. The more pressing

33

question at hand is how to lower the cost and time of making changes to an existing
system. As shown in Figure 3.9, model-driven LIMS solutions seem to have the answer to
that question. However, there are only two examples of MDA-based solutions to LIMS
development that the author is aware of. These solutions are not readily accessible, either
because they are no longer supported or because they are not well documented. In addition
neither is based on a rich knowledge model as represented in ontology. Thus, the
remaining chapters describe and evaluate my own MDA solution to LIMS development,

which is implemented in the knowledge model based Seedpod system.

34

4, SEEDPOD (A CASE STUDY)

This chapter describes Seedpod, an implemented scientific data management
system which demonstrates the model driven approach (MDA) described in the previous
chapter. Seedpod attempts to abstract the complexity of a data management system from
the perspectives of two primary user groups: scientific researchers and informaticists. The
chapter unpacks the architectural design and technical implementation details of Seedpod.
The primary focus is to show how this MDA approach to implementing LIMS helps to a)
separate design from implementation technology, b) hide technical complexity to keep the
focus on domain problems, and c) maintain a certain level of scalability.

Section 4.1 describes the overall architectural design of the system. Section 4.2 to
4.5 describes the three main components in detail: model, transform, and application
engine. Finally, Section 4.7 describes how scientific researchers and informaticists are

intended to interact with Seedpod.

4.1, Model-Driven Architecture

Seedpod implements a model-driven architecture. There are three major
components: 1) model, 2) transformation, and 3) LIMS web application (webapp) (Figure
4.1). The platform-independent model (PIM) represented in Protégé serves as an
abstraction to the LIMS. The transformation component translates the PIM to platform-
specific models (PSM), such as SQL in Seedpod, which can be executed directly. Unlike

other MDA systems, Seedpod does not generate platform-specific code. The three

35

Protégé Model (\1)

Data User Interface
Meeled Customization

/7 _
Transformation e
Vs

~ Databasé = [LIMS 3

H

% Meta-data g Server Web-base
X i

i” Application | quug| User Interface

Figure 4.1. Seedpod architecture with three components: 1) Protégé model, 2)
transformation engine, and 3) web-based LIMS application.

components are not tightly coupled, i.e. they can be developed and evolved
asynchronously.

The PIM (1 in Figure 4.1) is an integrated representation of a LIMS declaratively
represented using Protégé. It includes a domain-specific data model describing the entities
and relationships that the scientific users wish to manage. It also includes an application
model describing properties for customizing the look and feel of the LIMS web-based user
interface.

The second component (2 in Figure 4.1) is a transformation program that
automatically translates the Protégé model into a relational model for the backend
relational database, The database stores scientific data and meta-data on the mapping of
concepts between the two models. This meta-data describes a subset of the original
Protégé model used by the LIMS application. The transformation engine is non-domain
specific, while both the Protégé model and the relational model are domain-specific.

The third component is the LIMS application engine (3 in Figure 4.1). It includes the

server application, relational database, and a web-based graphical user interface (GUI).

36

Platform Domain
Protégé Model Platform-independent | Domain-specific
Transformation Engine Platform-dependent | Non-domain-specific
Relational Database Platform-dependent | Domain-specific
Server Application Engine | Platform-dependent | Non-domain-specific

Figure 4.2. Seedpod components’ dependency on their implementation platform and
domain.

Similar components would be found in a conventional web-based application with a
database backend. The database stores the experiment data and meta-data (or LIMS
model). The server application queries the database regarding the model, retrieves and
stores the experiment data, and finally, generates dynamic web pages for users. As
mentioned previously, the web server application code is not auto-generated from the
model through a transformation process. The application is non-domain dependent. Figure

4.2 summarizes the components and whether they contain domain specific information.

4.2, Modeling Using Protégé

Seedpod uses Protégé for modeling. Protégé provides a graphical user interface that
allows users to model a domain with a set of representation constructs such as classes, slots
and facets. Behind the scene, the models can be saved in various formats such as Protégé
projects (.pprj), XML, relational databases, or RDF. The models can also be

‘programmatically accessed through a JAVA APIL.

37

STANDARD-CLASS (Instance of STANDARD-CLASS)

Cardi
mutple
o tiple
mult'e
mult ple
itiple
multiple
snge
single
multiple

< stevens_v1 2 Protegé 3 3 v (file \C 1Documents%20and%20Settingsih
fle Edt Project Window Tocls Hebp
1 O e w % g o
'J Cesses w8 Siots X Forms @ Instances Queries
@ stevens_v1 2
| -
THING ~ STANDARD-CLASS
SYSTEM-CLASS
- META CLASS é !
- aass
STANDARD-CLASS Concrete
f— >
+ RDB_QASS
DAVABASE
SEEDPOD_MODEL Name
XML_CLASS DIRECT INSTANCES
-~ sor DIRECT SUBCLASSES
4+ STANDARD SLOT DIRECT SUPERCLAS
xML_SLOT DIRECT TEMPLATE &
« FACET DIRECT TYPE
« CONSTRAINT DOCUMENTATION
+ ANNOTATION NAME
+ RENATION ROLE
,+ D paTATYE SLOT-CONSTRAINTS
; fratocoﬂ(rmdsdwseseﬁefum v
v
l anss

Type
Instance of THING
Class wth superclass T
Clsss v th superduss Tr
Instance of 5LOT
Class wat superclass Cb
String
String
Symbol
Instance of CONSTRAINT

a2 Oseedpodiis - D 55
1l

«‘épratég %

Other Facets

inverse slot=s DIRECT TYRE

nverse slot= DIRECT SUPERCLASSES
n erse {ot= DIRECT SUBCLASSES
nverse siote DIRECT DOMAIN
inverse siot— DIRECT INSTANCES

allowed-values={Abstract Concrete} default

A) | I Yy
LT -~ - =
4 stevens_vt 2 Protege 3 3 1 (hle \C Documents¥20and320S gsthaol p\Seedpod2 O dpodLiMS « 0 %

Ee Edt Profect Window Took Help
Ve
! Qe w ¢ s ol /Qprolégé
Classes w8 Slots = Forms @ Instances =\ Quenies
N
@ stevens_v1 2 ! RDB_CLASS (instance of STANDARD-CLASS)
- *
THING ~ RDB.QASS
- SYSTEM Qlass
- METACLAS:
cLass
- SIANDARD CLASS Conarete v
+ ROBCLASS -
DATABASE
SEEDPCD_MODEL Name Cardi Tyee Other Facets
L GA AT g 20 A
- s0T =) Data_Source single Instance of Database
« STANDARD SLOT DIRECT INSTANCES multiple Instance of THING Inverse-slot= DIRECT TYPE f
*ML_SLOT DIRECT SUBCLASSES mukiple Class with superdlass T+ Inverse-slot= DIRECT SUPERCLASSES ”
+ FACET DIRECT SUPERCLAS mutiple Class with superdiass T+ mverse slotes DIRECT SUBCLASSES i
. CC STRAINT DIRECT TEMPLATE © multiple Instance of RDB_ATTRIL inwerse slotes DIRECT-DOMAIN
+ ANNOTATION DIRECT TVPE muliple Class with superclass RL. Inverse slotw DIRECT INSTANCES i
. RELATION DOCUMENTATION multple String
| . DATA_TYPE INLINE single Boolean defaultafaise ”
ProtocoknowledgeBaseReference |, ©3 JAVA_CLASS singls String |
- NAME singls String
| v 3 RDB_TABLE_INDEX mubple Instance of RDB_ATTRIL I
ROLE single Symbe! dliowed valuesm{Abstract Concrete} defauit
SLOT-CONSTRAINTS mubiple Instance of CONSTRAINT
STANDARD-CLASS = USER-ASSIGNED-NAMEsngle String
} =8 VERSION sngle Instance of Yersion |
| < > |

B)

Figure 4.3. Screenshots from Protégé showing the differences between the Protégé

provided basic meta-class :STANDARD-CLS (A) and the Seedpod meta-class
:RDB_CLASS (B). Extensions such as this allow customized domain specific modeling

to take place easily.

38

One of the advantages of using Protégé is that its meta-model can be extended for
modeling richer domain specific knowledge (Noy, Sintek, Decker, Crubezy, Fergerson, &
Musen, 2001; Gitzel & Korthaus, 2004). Seedpod expands upon the standard Protégé meta-
model by including :RDB_CLS and :RDB_SLOT. These new meta-classes inherit from the
standard system classes :STANDARD-CLS and :STANDARD-SLOT respectively. The custom
meta-classes are used exclusively as the default meta-classes in Seedpod. They allow users
to say more about a particular class (Figure 4.3). Figure 4.4 and Figure 4.5 show listings of
all the facets of classes :RDB_CLASS and :RDB_SLOT, respectively. Some of the facets are
inherited from :STANDARD-CLASS and :STANDARD-SLOT while many are custom added for
Seedpod (they have :RDB_CLASS and :RDB_ATTRIBUTE as their meta-class type in the

respective figures).

Slot Facet Names Slot Meta-Cls Description

:NAME :CLASS Unique string identifier

‘ROLE :STANDARD-CLASS

:DOCUMENTATION :STANDARD-CLASS | A description of the slot

:SLOT-CONSTRAINTS :STANDARD-CLASS | Selected from Protégé’s value types including Any, Class,
Boolean, Float, Instance, Integer, String, and Symbol.

:DIRECT-TYPE :CLASS Default value

:DIRECT-TEMPLATE-SLOTS :CLASS Another slot instance that describes the reverse
relationship.

‘{DIRECT-SUPERCLASSES :CLASS Maximum participation

:DIRECT-SUBCLASSES :CLASS Minimum requirement

:DIRECT-INSTANCES :CLASS The upper bound of a float or integer value

{INLINE :RDB_CLASS

‘USER-ASSIGNED-NAME :RDB_CLASS

JAVA_CLASS "RDB_CLASS

Figure 4.4. Listing of facets that describe customized Seedpod meta-slot class
‘RDB_CLASS.

file:///RDB_CLASS

Slot Facet Names

Domain Meta-Cls

39

Description

‘NAME :SLOT Unique string identifier

:DIRECT-DOMAIN :SLOT

:DOCUMENTATION :STANDARD-SLOT | A description of the slot

:SLOT-VALUE-TYPE :$SLOT Selected from Protégé’s value types including Any, Class,
Boolean, Float, Instance, Integer, String, and Symbol.

:SLOT-DEFAULTS :STANDARD-SLOT | Default value

:SLOT-INVERSE :STANDARD-SLOT | Another slot instance that describes the reverse
relationship.

:SLOT-MAXIMUM-CARDINALITY | :STANDARD-SLOT | Maximum participation

‘SLOT-MINIMUM-CARDINALITY | :STANDARD-SLOT | Minimum requirement

‘SLOT-NUMERIC-MAXIMUM

:STANDARD-SLOT

The upper bound of a float or integer value

:SLOT-NUMERIC-MINIMUM

:STANDARD-SLOT

The lower bound of a float or integer value

{USER-ASSIGNED-NAME

:RDB_ATTRIBUTE

A better display name for GUI

‘DATABASE-INDEX

:RDB_ATTRIBUTE

A flag for whether the slot should be indexed in the
database

‘DATABASE-TYPE

:RDB_ATTRIBUTE

Value type for storage in a relational database. Options
include Integer, Varchar, Boolean, Character, Numeric,
Text, Date, Time, Timestamp

‘DATABASE-TYPE-PARAMETER

:RDB_ATTRIBUTE

Parameter to database type. For example, length of
varchar.

:INLINE_ATTRIBUTE :RDB_ATTRIBUTE | A flag which sets an instance type slot to be in-lined. For
example, slot instance of class Date has three in-lined
attributes: year, month, and day.

:PERMISSION :RDB_ATTRIBUTE | Field level permission setting. (Not implemented)

{UNIQUE :RDB_ATTRIBUTE | A flag for whether a value can only exists once in the
database.

{UNIT :RDB_ATTRIBUTE | Name of measurement. For example, meters, inches.

‘VALUE-EXPRESSION ‘RDB_ATTRIBUTE | Formula or logic for calculating the value of this slot.

(Not implemented)

:VIEW-SEQUENCE

‘RDB_ATTRIBUTE

Sequence number for the display of this slot in the web-
based GUIL

:FORM-WIDGET ‘RDB_ATTRIBUTE | HTML widget for data input. The allowed values depends
on implemented widget plug-ins in the web application.

‘FORM-WIDGET-PARAMETER :RDB_ATTRIBUTE | A naive way for inputting parameters to the form
widget. -

:VIEW-WIDGET :RDB_ATTRIBUTE | HTML widget for data display

:VIEW-WIDGET-PARAMETER :RDB_ATTRIBUTE | A naive way for inputting parameters to the widget.

:DIRECT-TYPE :SLOT Slot meta-class. (Ignored. Seedpod only uses slots that
are instances of :RDB_SLOT or children of :RDB_SLOT)

:ASSOCIATED-FACET :STANDARD-SLOT | (ignored for Seedpod)

:DIRECT-SUBSLOTS :STANDARD-SLOT | (Ignored for Seedpod)

:DIRECT-SUPERSLOTS :STANDARD-SLOT | (Ignored for Seedpod)

:SLOT-CONSTRAINTS :STANDARD-SLOT | (Ignored for Seedpod)

:SLOT-VALUES :STANDARD-SLOT | (Ignored for Seedpod)

Figure 4.5. Listing of facets that describe customized Seedpod meta-slot class
:RDB_SLOT. The customized facets are added to give more information about a slot.

file:///RDB_SLOT

40

1 < stevens_v1.2 Protege 3.3 1 {file. £: Documents320and%20Settngs haol Desktop Seedpod2.0 seedpodLids Knowle... « 01 2,
| Bl Edt Broect Wndow Tools Heb
|

\._\)l—:’lu H &

Classes #w Sicts T Forms @ Instances Quernes il
« 1
»

@ stevens_vl 2 Subjett (nstance of RDB_CLASS)

2
3,

:\\protégé

g
B

It

THING A~ Subect
+ SYLTER CLASS
Famiy_Study
-, Subject
- fAutoimmune_Disease_Subject
:)ECJ,S;’;:& - - 4 Iy
RAY_Subject Name Cardi Type Other Facets X
THY_Subiect B blopsies mutiple Instance of Biopsy
NOP_Subjsct W belong_to_famiy requred Instance of Family_Study mverse-slot=Family_Members
! oar 77 last_name snge String
Medicatian_Info s Other_ID sngle String
Medication @ Race mutiple Symbol owed-vah, {] _Native,
Sample o e o |
[- Sample_aliquot v L 2 L R 4 "

| v \

Abstract v

THING

A) I L _ e]

™ Race (instance of :RDB_ATTRIBUTE) - 02X
W

{
|
T urique 08 index l
|

. [reaured atleast

African_amencanBlack [mukiple &t most

ITEXTAREA ke Attributo {7J Awo tncrement v

CTINK v

!
B) L - o - _J\
Figure 4.6. A) An example of the Protégé modeling environment. This also shows an
example of class inheritance modeled in Protégé. Parent abstract class Subject is
specialized to several concrete classes (e.g. PLE_Subject, SOC_Subject), each with
distinct slots. B) A screen shot of a slot modeling form. Note that the slot meta-facets
that were custom added such as Form widget, DB type, are available to the modeler.

41

Several knowledge-based approaches to database design exist (Noah & Lloyd-
Williams, 1995). An integrated model of data objects and the LIMS application is necessary
(Goodman, Rozen, Stein, & Smith, 1998; I-min A. Chen, 1995). The majority of the facets
describe data elements. For example, "DATABASE-TYPE (Figure 4.5) allows the modeler to
specify whether a slot should be implemented as “DATETIME” or “VARCHAR”or “TEXT”in
the relational database. In this case, this newly added facet clarifies an example of model
impedance between Protégé and RDB.

Additional facets are created to describe the look-and-feel in the LIMS application.
For example, “:FORM-WIDGET” allows the user to specify the plug-in widgets that are
available in the web application. An example of how some of the slot facets are applied can
be seen in definition of slot racein Figure 4.6.B.

Protégé is used in software applications for domain ontology management (Musen,
1998). Separating the domain knowledge eases application maintenance. Users can create
domain-specific model classes by creating instances of these meta-classes such as classes
Subject and Medication. Each class is further described by a set of slots, or attributes. For
example, the Subject class is described by slots such as /ast_name, race, ID, etc. Modeling
classes and slots are demonstrated with examples in Figure 4.6. The idea is for scientific
researchers, who design experiments and have domain knowledge of the data model, to
describe the data objects inside of Protégé using its frame-based modeling environment,
which is similar but richer than the more familiar object-oriented (00) modeling

environment (Noy & McGuinness, 2001).

42

The 00-like approach to modeling relationships may be more intuitive than
normalized relational modeling for naive modelers such as scientists. In the Protégé
environment, relationships between classes are represented by slots of instance types. A
relationship is directional with a from-class and a to-class. The from-class contains an
instance type slot that is of type to-class. The relationship is named by the slot. The °
cardinality of the relationship is also defined by the slot. For example, class Subject is
related to class Family through slot belong to_family. Note that an inverse relationship,
from Family to Subject is also defined by slot family_members (Figure 4.6.A). The
significance of the inverse relationship representation is discussed in depth in Chapter 5.

Inheritance relationships can be modeled in Protégé. For example, one can create
an abstract class called Subject. An abstract class differs from a concrete class in that it
cannot have actual instance data. By using inheritance, the user can create more
specialized Subject classes, such as NOP_Subject (control subject), with some slots
inherited from Subject and customized slots that distinguish it from other types of Subjects

such as PLE_Subject, SOC_Subject in Figure 4.6.A.

4.3. Model Transformation

Protégé stores data in an entity-attribute-value triple fashion, which is inefficient
for large data set retrieval assuming the data are not highly sparse (Entity-attribute-value
model, 2010; Nadkarni, Marenco, Chen, Skoufos, Shepherd, & Miller, 1999). An object-
relational style database is used to store data in Seedpod for efficient data access and

storage. Thus, it is necessary to transform the Protégé model into a relational model. An

43

automatic transformation is developed. Such an approach has been shown beneficial in
gene sequence data (Rubin, Shafa, Oliver, Hewett, & Altman, 2002). Chapter 5 describes in
detail the theory, implementation and the outcome for this automated method. The
transformation program is what allows Seedpod to leverage both Protégé’s design GUI
environment and a robust relational database that may have been prohibitive for naive
users. Running the transformation returns consistent predictable results. The resulting
database definition is in a text file which can be examined before it is used to create a
database. The resulting SQL conforms to the SQL-99 standard, which means it should be
executable in any relational database management system that implements the standard.
The content of the transformation database definition consists of a database schema for
storing scientific data and meta-data tables populated with mappings between the Protégé
schema elements and RDB schema elements. This mapping meta-data becomes the brain

for the server-based application.

44 Relational Database

The transformation step results in a database definition written in SQL which can
be used directly to create a database. Each seedpod database instance has two components:
data and meta-data. The database scheﬁa is described in detail as a result of the
transformation method in Chapter 5. This section summarizes the characteristics of the

database. Seedpod uses a PostgreSQL database to store its data.

4.4.1. Data tables and views

44

Each Seedpod data model is different depending on the specific domain application
(model-specific). The database tables are mostly normalized with the exception of tables
storing inherited objects (see horizontal vs. vertical fragmentation discussion in Section
5.3.2). The schema is optimized for insertion, editing, and retrieval of objects defined by
Protégé classes. Furthermore, views are pre-constructed for ease of querying one object at
a time without users having to deal with queries with joins. They also enable users to query
objects in an inheritance tree by the parent type. This approach is similar to an Object-
Relational database (Liu, Orlowska, & Li, 1997). For example, given an inheritance tree of

wine varietals, querying for instances of wine can return instances of pinot, merlot, etc.

RIB A DESCRIPTIO APPED TO
PRO
CID Unique class ID generated by the database
FRAMEID Frame ID given in the Protégé model.
NAME class name :NAME

USERDEFINEDNAME | The user can define a different name for better
recognition or display

CLSTYPE Slot meta class, Default :RDB_CLASS :SLOT
PARENT Parent class name. Seedpod does not support multiple | :SLOT
inheritance. Only one name is allowed. Values can be
:THING, :REIFIED_SLOT_CLS, etc.

PRIMARYKEY Name of the table primary key :RDB_ATTRIBUTE
INLINE Boolean for whether this class is an inlined complex | :RDB_ATTRIBUTE
data type
ISCONCRETE Bolean for wheather a class is concrete. False if it is | :RDB_ATTRIBUTE
abstract
DOCUMENTATION | User defined description of a class :SLOT
BROWSERPATTERN | This corresponds to object display pattern used in | :SLOT
Protégé,
TABLENAME Name of corresponding RDB table ‘RDB_ATTRIBUTE
VIEWNAME Name of corresponding RDB view :RDB_ATTRIBUTE
JAVACLASS Developer custom java class that implements this | :RDB_ATTRIBUTE
class.

Figure 4.7. Listing of attributes in meta-data table :RDB_CLASS.

45

b apped to Protégé Slo 0
e Figure 4.5 Co

aid Unique attribute ID generated by the database

framelD Frame ID given in the Protégé model.

domainCls :DIRECT-TYPE Containing class of the slot

name :NAME Name of the slot

userDefinedName | :USER-ASSIGNED-NAME Pretty name for the HTML user interface

slotType :DIRECT-TYPE Meta class of the slot

protegeValueType | :SLOT-VALUE-TYPE Value type from Protégé

allowedCls :SLOT-VALUE-TYPE Allowed Cls for Instance types.

defaultvalues :SLOT-DEFAULTS Default value for the slot

slotinverse :SLOT-INVERSE Inverse of the slot

numericMin :SLOT-NUMERIC-MINIMUM Lower bound of a numeric data element

numericMax :SLOT-NUMERIC-MAXIMUM Upper bound of a numeric data element

cardinalityMin :SLOT-MINIMUM-CARDINALITY | Minimum allowed data

cardinalityMax :SLOT-MAXIMUM-CARDINALITY | Maximum allowed data

nullable A flag for :SLOT-MINIMUM-CARDINALITY >==

isMultlple A flag for :SLOT-MAXIMUM-CARDINALITY =-1

unique :UNIQUE

index :DATABASE-INDEX (Not implemented fully)

symbolChoices :SLOT-VALUE-TYPE Allowed value set for simple types such as strings,
numbers, integers.

unit :UNIT Unit for numeric attributes, e.g. km, pound, cm.

documentation :DOCUMENTATION Description of the slot

rdbAttributeName Attribute name implemented in the database. Maybe
auto-edited in the transformation program.

rdbTarget Description of what the slot maps to. It can be a slot
described as :RDB_ATTRIBUTE(/slot name)), or another
class :RDB_CLASS(/class name)).

dbvalueType :DATABASE-TYPE RDB value type either as specific in :DATABASE-TYPE or
by default transformation rules (see Figure 5.11).

dbvalueLength :DATABASE-TYPE-PARAMETER Length of Varchar type, either as specified in
:DATABASE-TYPE-PARAMETER or by transformation
rules (Chapter 5)

isAssociated A flag for whether the attribute is implemented as being
associated to the corresponding domainCls table.

expression :VALUE-EXPRESSION (Not implemented)

viewSequence :VIEW-SEQUENCE Appearing sequence in HTML form

formWidget :FORM-WIDGET Widget used for a HTML form for data editing.

formWidgetParam | :FORM-WIDGET-PARAMETER Parameter for the HTML widget

viewWidget :VIEW-WIDGET Widget used for viewing the element in HTML

viewWidgetParam | :VIEW-WIDGET-PARAMETER Parameter for viewing widget

Figure 4.8. Listing of the attributes in the meta-data table .RDB_SLOT. The attributes
are mostly mapped to (implemented) facets listed in Figure 4.5. Comments are
available to ones that do not have a direct one-to-one match.

46

4.4.2. Meta-data storage

Meta-data about the mappings between Protégé and this relational schema are
stored using the same schema in each Seedpod database instance. The schema for these
meta-data tables are non-model-specific. In other words, they have the same schema
regardless of which database they reside in. Their content is pre-populated by the
transformation program.

There are two meta-data tables in the database: one for Protégé classes called
:RDB_CLASS (Figure 4.7) and the other for slots called :RDB_SLOT (Figure 4.8). The Protégé
facets for class :RDB_SLOT listed in Figure 4.5 are mapped to attributes for the table in
Figure 4.8. The same mapping is true for attributes of :RDB_CLASS.

The two meta-data tables serialize the transformation, mappings between Protégé
and the relational model. It allows the Seedpod application to query about the Protégé
model while keeping in touch with the database implementation. It contains information
about the object structure, how objects are stored in the relational database, and finally
display customization for HTML pages. Examples of the meta-data tables can be found in
Chapter 5.

Additionally, the meta-data tables divorce the dependency of the Seedpod
application from Protégé. In the case that a more appropriate modeling environment is
designed to replace Protégé, Seedpod’s web application (Wikipedia: Web application, 2009)
can still work as long as it produces meta-data tables. When changes need to be made to

the model, a database engineer would need to translate the changes to meta-data table

47

changes in the database. The web application is not affected. See Section 6.2.5 for more

discussion on system evolution.

4.5, Web Server Application

Once a Seedpod Protégé model is transformed to a relational database schema, a
Seedpod LIMS web application can be configured and installed to run with no
programming involved. This section describes Seedpod’s web server application, which
dynamically generates web-based applications that allows users to manage data in the
database (see component 3 in Figure 4.1). The focus of the description is in the technical
implementation. One of the most salient characteristics of this web server application is
the fact that it is non-domain specific. This means the application code does not contain
any specific information about a particular experiment, scientist, or laboratory. Note that
the implementation differs from auto-code generation in which partial API code is
generated requiring manual completion such as Fogh’s work in 2005 (Fogh, et al., 2005).

The web server is developed using JAVA Enterprise Edition (Wikipedia: Java
Platform Enterprise Edition). A mix of JAVA server pages (JSP), JAVA Servlets, and JAVA
classes can be found in the code base. The server application code is organized in general
into model, view, and controller. The JAVA package seedpod.webapp contains view and
controller components. It shares package seedpodmodel with seedpod.kbzdb
(transformation). The server application runs on a Tomcat web server and it communicates

with a PostgreSQL database.

48

451. “Model”

The section title “Model” may lead to confusion. This section is about the object
abstraction for the application in JAVA code. Model here is an abstraction of a LIMS model,
or meta-model, which makes a Protégé LIMS model an instance of the application model.
To illustrate it with an example, a typical LIMS program may have an object model that
includes object classes such as protocol, experiment, patient subject, etc. However, in
Seedpod, the model classes consist of meta-classes such RDBC/s and RDBS/ot from the
Protégé model and Relation and Attribute from the RDB model. This abstraction disregards
the actual data types and allows the application to be general. The server application is
hence not domain application specific.

A class called ModelMap captures mappings between Protégé and RDB. This is the
heart of Seedpod, which is shared between the web application and the transformation
program. The transformation program uses ModelMap to materialize the mapping into
meta-data database tables (see Chapter 5). The web application imports the ModelMap
object on startup from the database into a set of ClsMap (Protégé class) and SlotMap
(Protégé slot) objects. These objects are similar to RdbCls and RdbSlot used for
transformation. The distinction is that ClsMap and SlotMap are derived from the database
serialization and they no longer have references to the original Protégé Clsand Slot objects
like RdbCls and RdbSlot. The ModelMap object informs the behavior of the controller and
view components of the web application as described in the next two sections.

Seedpod implements a universal unique object system. Instead of having each table

manage its own unique primary key, the entire database manages one set of unique IDs

49

through one table called Thing. Every data object instance added to the database is first
added to Thing to obtain a new ID. That ID is then used to insert the object into its
appropriate data table. This index allows the application to figure out quickly the data type
of an instance by querying only one table. Additionally, the Thing table keeps track of the
state of an object, whether it is saved or deleted. A Seedpod object instance is never deleted
from the database.

In general, Seedpod treats all instances in the database as Seedpod data objects, or
SeedpodDO. 1t implements PersistenceDO, which provides a “CRUD” interface for Creating,
Retrieving, Updating, and Deleting of an object from the database. Each SeedpodDO
manages a set of AVPair which stands for attribute-value pair. It is responsible for binding
values to attributes. An AVPair object implements a set value and a get value function,
validates data value(s), and generates a unique reference ID used by the user interface.
Class Relationship captures associations between SeedpodDO objects. It has references to

the relationship SlotMap, and source and target SeedpodDO.

4.5.2. Controller

The controller is also the logic of the application. It receives inputs, calls upon the
model, and generates views. It is the interface between the view and the model of an
application. Context variables of the LIMS are defined in a configuration file web.xm/ and
accessible through class LIMSContext (see 4.7.2).

When the server is started, class .Seedpod is invoked by the server which initiates a

connection pool to the PostgreSQL database, and downloads the ModelMap from the

50

metadata tables. The entire ModelMap is kept in memory for access for the life of the
server application.

The connection pool allows a maximum number of 50 threads to be connected to
the database at a time. A particular query may request an available or free connection from
the pool. If no available thread exists, a new one is created.

Each time a page is requested, user authentication is validated by a filter JAVA
servlet. If the user is authenticated, she is then led to the requested page. If not, she is then
redirected to the login page. User authentication is saved for a browser session and is lost
when the browser is closed. User passwords are encrypted using a BASE64Encoder hash
function before saving to the database.

Seedpod also implements a persistence manager, PManager. This manager keeps a
reference to a database connection, and sends queries to the RDB to retrieve data by
Seedpod data objects. PManager creates SeedpodDO by object ID and/or object type. In
fact, PManager.getObject() is designed to retrieve implemented objects by name using
JAVA reflection to allow the application to be flexible (see 4.6.2 for more detail).

In addition to managing application communication with the database and
authentication logic, the controller package includes major roles in accepting user requests
from the browser, mostly processing HTML form submissions. These are classes found in
the code base seedpod. webapp.controller package with names starting with Action such as
ActioninplaceEditor, ActionNewinstance, etc. These classes are named because they are
values to the action attribute in HTML form elements. They extend class HttpServiet and

override functions doPost() and doGet(). For example, the function

51

ActionNewlnstance.doPost() asks ModelMap for the slots and their form element reference
IDs (created by each slot’s AVPair object). Then it retrieves the user submitted values by
those reference IDs. The values are validated by each corresponding form widget. Finally, if
no validation error is generated, an object is created in the database. The user is redirected
to view the new object page. If a validation error occurs, the user is redirected back to the

HTML form with error message prompts.

453, View

Most of the view pages are implemented in JSP pages. For example, instancejsp
provides layout of the html page. It calls a JAVA class InstanceRenderer passing a
SeedpodDO object for the actual r.‘endering. The InstanceRendererhas access to the object’s
meta-data through ClsMap and SlotMaps. 1t also has functions for rendering the
SeedpodDO based on user request, whether it’s for viewing, creating new or editing. For
example, function renderCreateForm() creates an HTML form for users to.input data for a
new object. The function iterates through the SeedpodDO's attribute-value pairs (AVPair).
For each AVPair, a corresponding form widget is retrieved from the LimsWidgetFactory by
name and then rendered. Again, each A VPair generates a reference ID for the form element
which is used by the form handling class to retrieve the value of user input as described in
4.5.2,

A user can specify a HTML form widget and a view widget in the Protégé model. If
they are not specified, a default widget based on Protégé data type is assigned during the
transformation step. Each of the widgets is associated with an actual JAVA class that

implements it for either viewing or editing. Figure 4.9 lists the available widgets, valid

52

Protégé and RDB types, and their corresponding JAVA classes which implement the
functions. The JAVA classes extend (or inherit) a generic widget LimsWidget and override

functions for rendering. Each widget class overrides a validation function to make sure that

Protégé JAVA class
Form Widget | View Widget | type RDB type name Description
HTML input that allows a
user to input a string. The
string length can be
Integer, varchar(n), restricted based on the
TEXT STRING String text TextArea length for varchar.
Allows users to select
between allowed-value
RADIO RADIO Boolean boolean Radio options.
Shows a drop down boxes of
SELECT Symbol varchar Select allowed-value options.
A calendar window pops up
for user to choose a date
varchar, which auto-fills the text
DATE DATE String text Date string.
A multi-row text input
TEXTAREA String text TextArea widget.
A check box widget similar
to radio but allows multiple
CHECKBOX CHECKBOX Symbol varchar(n) | CheckBox options being selected.
A numeric input that has
NUMERIC NUMERIC Float numeric Numeric pre-defined unit.
A widget that allows the
user to create relationships
between two different
object instances. See Figure
OBJECT_LINK | OBJECT_LINK | Instance relation Object_Link | 4.14 for example.
A password string input
that shows a star for each
character of the password
PASSWORD PASSWORD String varchar Password (Figure 4.12).
FILE- FILE- Instance A special OBJECT_LINK for
RESQURCE RESOURCE of File relation File object File instances.
Shows a tabular view of a
SPREADSHEET | Instance SpreadSheet | set of instances.

Figure 4.9. This is a list of implemented HTML widgets. Form widgets are used in data
input forms while view widgets are elements in rendering the data. Each widget has a
valid data type it can work with. Each widget can do either or both view and edit. The
widget names are parts of the Protégé model. The widgets instances are dynamically
instantiated at run time by ZLimsWidgetFactory.

53

the data input or data it is asked to render can be handled by the rendering function. For
example, this gives the widget a chance to display error messages for inappropriate user input.
These widgets are organized by LimsWidgetFactory. The factory class dynamically
initializes and instantiates these widgets by their names. Names of the widgets are part of
the Protégé model.

Finally, page context sensitive content is implemented using AJAX, or JavaScript with
XML (Wikipedia: Ajax). The content can be requested from the client to server
asynchronously, increasing code modularity and interactivity. For example, in a page
rendering a data object of type Family, a tool box on the right displays quick links for
creating another new instance of Family, or browsing instances of Family, in addition to
other unimplemented functions. A second content box below shows meta-information
about the object, such as when it was created and by whom (this is not fully implemented
but the information is available through a Seedpod system table Access_Log). The content
of these boxes are updated depending on what the user is trying to do on a particular page.
Independent AJAX functions call different JAVA Servlets to generate the content. An
update only occurs to that portion of the page. See Figure 4.14 (right panel) for examples of

these context sensitive AJAX boxes.

4.6, Extending and Customizing Seedpod

Seedpod server’s application code is not domain-model specific. Unlike most of the

other model-driven applications, Seedpod does not generate program code from the

54

model. In the case that application code is generated, developers can go in to modify the
generated code before deployment. In the case of Seedpod, adding features or making
changes to existing features is not as trivial. The server application has designed hooks for
developers to make extensions. This section describes three ways that one can extend and
customize Seedpod: widgets, data objects, and HTML page display. The customization

discussed here requires a knowledgeable programmer.

4.6.1. Customizable widgets
Seedpod’s widgets associated with slots are customizable components. A widget is

an HTML element. It has a unique ID. It may be a part of a form, in which case, it is editable.
It can receive user data input (doPost), validates the input (validateSubmissionData), or
render a form element (doEdit). Alternatively, it may just be used to render a data object
(doview, or render). A developer can simply extend the generic LimsWidget class and
override the following functions:

o Constructor(AVPair avpair} initializes a widget. The AVPair object

generates the HTML element widget ID.
o setld:sets a string ID name for the HTML widget.

e getld:returns a string ID name for the HTML widget.

e Protected String render. This function is called to generate the HTML code

which is called by either doEdit or doview depending on the widget’s

function.

55

o _validateWidget: validates the AVPair value type against what the widget can
handle.

e _String doEdit: returns an HTML form element that the user can interact
with.

e String doView: returns an HTML element that renders the data value.

o String doPost{SeedpodDO obj, Object inputk the input object is a value
assigned to this widgets AVPair.

o SlotMap getAttribute. returns the attribute part of the associated AVPair
object.

e Object getData: returns the value part of the associated AVPair object.

o boolean allowlnPlaceEdit: returns true if the form widget responds to an
AJAX call for real time edit of an element.

o boolean validateSubmissionData (Object submittedValue) returns true if the
submitted data is appropriate for input. For example, it may check that the
data is not null for an attribute that requires an input.

o boolean supportsMultiValuelnput. returns true if the widget can accept
multiple value input, or render a set of values. The spreadsheet widget is an
example of a widget that can support a set of values.

Then, to make the new widget available to be used in a model, the name of the
widget is added to SeedpodModel.Form.RdbCls.FormWidget enum list or

SeedpodModel.Form.RdbCls.FormWidget enum list. Alternatively, the name is added

56

manually to the meta-model :RDB_SLOT as allowed values. The function
LimsWidgetFactory.getWidget() is modified such that the switch block would return a new

widget instance when the widget’s name is requested.

4.6.2. Extensible object definitions

SeedpodDO is a generic database object that is persistent in the database.
Customized persistence objects can extend SeedpodDO to have additional functionalities.
As it is implemented, as long as the JAVA class has the same name as what is being modeled
in Protégé in addition to have the class being placed inside of package
seedpod.model.custom, PManager can find the class and create an instance of it by
reflection. Class SeedpodUser is an example of a custom class. It implements function
authenticate which encrypts a’ user input password and compares it with what is stored in

the database.

4.6.3. Extensible page layout

In addition to new object definition, developers can also develop a new SeedpodDO
InstanceRenderer instead of the default. This renderer can change the layout of an object
display on an HTML page, or change the look and feel of a data input form. New JSP pages
can be developed to augment what the user interface looks like as well. An important point
to keep in mind is that changes to modeled classes may make these extension classes or JSP

pages compromised.

57

4.7. Application Workflow

An important value of Seedpod is the ease of deployment. The entire project is built
using open source technology. This section describes the major steps in deploying a
Seedpod application. Even though Seedpod was designed for scientists to launch a full
relational-database-backed web application, at this point, an informaticist works with
scientific researchers as a team in the process. The informaticist may not need to be a
programmer or familiar with database. A minimal amount of knowledge in software
installation and server administration is needed.

Seedpod web server application code is packaged along with the transformation
code. The whole package is open source available for download from Google Code URL:
http://code.google.com/p/seedpod/. 1t is released under GNU Public License V3.0 (Free

Software Foundation, 2007).

4.7.1. Step 1: create the model

A scientist user is only involved in the first step of the development process. The
user designs a LIMS model in Protégé. Protégé can be downloaded from Stanford’s website.
It is a platform independent application. Seedpod’s meta-model class and slot added by
Seedpod’s Protégé plug-in (Figure 4.4 and Figure 4.5) must be used. If the scientist
researcher is not familiar with modeling in Protégé, an informaticist works with the
scientist and interviews the laboratory researchers and technicians about data flow in the

lab, experiment protocols, and other requirements.

58

4.7.2. Step 2: Transform model and create database

Once a Protégé model is complete, the informaticist can run the transformation
application either by using the Protégé transform plug-in or by running the JAVA
transform application on the command line. The resulting SQL files are saved. The next
step is to install a relational database engine such as PostgreSQL used in this example. The
SQL files created by the transformation are run in the database engine to create a new
database. Finally, the database server is started. The database server connection URL is

saved for configuring the webapp in the next step.

4.7.3. Step 3: Deploy web application

In the last step, an Apache Tomcat web server (The Apache Software Foundation,
2011) is installed and the webapp is downloaded. The file web.xm/ in the web application
must be configured. Figure 4.10 lists the parameters that need to be set correctly for the
webapp to talk to the database server. The HTML pages‘ and compiled java classes should
reside in the WebContent folder. The project is compiled into a Web Application Archive,
or WAR, file for deployment. The Apache Tomcat server is started and the WAR file is
deployed. The webapp can be accessed from a browser using URL: [web server
domain]/[Seedpod app install path]/lims/indexjsp. Upon the first execution of the
webapp, a default user Administrator with password seedpod is automatically created in
the database. A system administrator can login with the default account and change the

password in the user configuration page.

59

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp ID" version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web~app 2 4.xsd'">

<context-param>
<param-name>applicationDirectory</param-name>
<param-value>/lims</param-value>
</context-param> '

<context-param>

<param-name>WebappURL</param~name>
<param-value>http://localhost:8088/</param-value>
</context-param>

<context-param>
<param-name>LIMSName</param-name>
<param-value>Steven’s Lupus Lap</param-value>
</context-param>

<context-param>
<param-name>DatabaseDriver</param-name>
<param-value>org.postgresql.Driver</param-value>
</context-param>

<context-param>
<param-name>DatabaseURL</param-name>
<param-value>

jdbc:postgresql://localhost:5432/stevens vl1.3/
</param-value>

</context-param>

<context-param>
<param-name>DatabaseUser</param-name>
<param—value>Eostgres</param—value>
</context-param>

<context-param>
<param-name>DatabasePassword</param-name>
<param-value>postgres</param-~value>

</context-param>

<context-param>
<param-name>DatabaseName</param-name>
<param-value>Stevens (vl.3)</param-value>

</context-param>

</webapp>

Figure 4.10. Here is a snippet of web.xml on the web server which is required to be
conficured for the avvlication to communicate with the database server.

http://Java.sun.com/xml/ns/j2ee
http://www.w3.org/'2001/XMLSchema-instance
http://Java.sun.com/xml/ns/j2ee
http://Java.sun.com/xml/ns/j2ee/web-app_2
http://localhost:8088/%3c/param-value

60

This last step would allow scientists to come back to test the system before it gets
final deployment. A scientist user may need to tweak the model in step 1. An informaticist
may need to debug or customize the web-based GUI in step 2. Short cycles of testing and

deployment may occur before the LIMS is ready to store real data.

4.8. Results

Steven’s Lupus Research Lab (2.1.2) was studied for a demonstration of Seedpod.
The author interviewed scientists that work in the lab for 2-3 hours and completed a
Protégé model in 2 hours. In general, the process for an informaticist to understand the
LIMS model is the majority of the effort. This section shows screenshots from the Steven’s

Protégé model and the web-based user interface.

TR 13 Ao) Y1 (e e
He TR P gedow Tods Promel ek
i - n LIS merlgé

VI mSds Tlom & remow & qew Roag

® oers 133 o Semc (reance o W08 GASS

% 3
§

¥ Sarpe med g Nome we Twe St Facty

Winkeis t yohe reguat stanos S Fard v oridott o perbes
Sy

ey
Praty s T waesctbos o

ot
e
il
o
nge
"o
pe rg deatuak
o o wowes aors BATERL S et B
-k ot v Yo ot
oy s et e PR 09y CBS PR v
"
e
g
g
ne
*on
- gn
¢

£ Soas. dasm E

Figure 4.11. A screen shot of the Lupus Lab model.

61

4.8.1. Steven’s Lab Protégé Model
Figure 4.11 shows a screen shot of the Protégé model. Class Subject is highlighted.
The template slots panel on the right shows some simple data types and some

relationships. For example, belongs_to_family is a reference to a Family object.

4.8.2, Web-based User Interface

D Agd new Post i feel x 73 Google Calendar * | & South Norean Womse D) seedpoas LS

L € # fr ntp localhost B0S8 <tamir 15p 35~ Momd-DIGRBHAD HSDORAF 1273 \GTLE BFRBS » B~ F~
Steven's Lab
376 You are not signed in yet Sgn n Abost Help Wed Apr 28 10 02 30 FOT 2010 L4 ‘eedpod

Please Sign In

Lab Database stevens H

Sectpodr>
sasswora

slan in

Figure 4.12. User log in screen.

This section shows the web screenshots of the user interface for various data
management tasks. Figure 4.12 shows a screen for user sign in. Figure 4.13 shows the
screen for a user to choose the class of which she wishes to create a new instance. The

dropdown list of classes is dynamically generated from the model.

< 4 & Southkoresa Womap _»/ [Seedpod LiMS

€« C f 1Y bttp / locathost 007 Ueve crecte! stame fopp » O~ F-
Steven's Lab
¥ o adminstrator Leqout About Help Wed Apr 28 10 04 37 PDT 2010 [] ’eedPOC’

Select class type to sae the options in the drop down

G
gl Abstract Buopsy
a Family Ctass Information
Sample_medications v

{create vev irstance

Figure 4.13. Choose a class type for creating a new instance.

62

™y Seedpod instance

€ C i % http / localhost 8088/ums/in tar ce jspiclsName~Sut jeLt&rrmior createlbelongs 1y family 5 » O~ &~
Steven's Lab -~
{
I admin strator Logout About Help Fn Apr 30 14 50 47 PDT 2010 L ‘eedPOd l
1
i
Subject O wev e subect [wemeg] |
. . . ‘
New Subjsct ATt oy |
Sex M ¥ Information
- (eat abLsadn ats
state } o oapen

I Eeveem—
i

e s s e e v Mt
Ref Phys atn o1, rfacees o3

Medical
Record i
Number

Transfusion?

disease

Day

Month |

city

First Name

Yaar

O no

ues tionnarre
Q ® 0 yes

Family* e Family 15 _amo e

e ———] v

Figure 4.14. The web form for creating a new instance of Subject.

Figure 4.14 shows the web form for creating a new instance, in this case a Subject.
The attributes and corresponding widgets are dynamically generated. A bolded attribute
name denotes that a value is required. The names for attributes are user-defined displayed
names, which are different from the names used in the model or attribute names in the

database tables.

63

() Add New Post < | feel... > [Google Calendar x \ & South Korean Woman... x/ [Seedpod in*
& C A % hutp://localhost 8088 (lims/instance, jsplclsName=Familyfioid=15&actior
Steven's Lab
Home admunistrator Logout About Help Wed Apr 28 10:11:14 PDT 2010 e
lchanges saved.
Faml'y 15 ectapes Type Famiy: [edit] [delete] L_.f
2p 98002 .
address E Inf
Family ID* 2
Cre
state WA an
Last Name Anderson
Family Members E
hm phone # 206-383-282 l‘ A
og
wk phone= —
city

Figure 4.15. An example of an instance view page.

Figure 4.15 shows an example of an instance view page after it has been edited. A
message that says “Changes saved” is prompted at the top. Each attribute can be edited in
place individually by clicking on the corresponding value cell on the right. Actions such as
edit and delete are provided next to the object instance name.

Figure 4.16 shows that Family Members is a relationship attribute. Clicking on the
value cell shows the user that no subject exists for this Family instance yet. The user can
choose to add one from the database or create a new one. If the user chooses to create a
new instance, she is then brought to a screen that is shown in Figure 4.14 with the value for

Family automatically filled out. If the user chooses to add a relationship to an object that

') Seedpod instance

€ C % hip /rlocalhost BrEBAIMS/ i stance 1pleehan r-Farrayf 1d-15R0¢h 0, ew » 0
Steven's Lab “ty
b 3 adnumistrator Logout About Help Fn Apr 30 14 48 19 PDT 2010 % L ‘eedpod

Yools

Family 15 » . ¢\ « tamie [edit } [delete]

o 7 sate LMy
2p 98002 e 8 85 relatrr
address.

Family
m* 2
state WA Ceredlya trato
Laat ROCk. 037
Neme Anderson
. Recant Instances
i
‘Adr] “ [EE A I
iy
No Subject tn the database yat \Would you hka to creata a new
Family one>
Membaers e
cloge yes)
lcarcat] [save
hm phone 206-183 282
wk
phone=
aty Seatte

Figure 4.16, Editing a relationship value shows options for choosing a new instance
or creating a new instance. This is an example of the OBJECT_LINK widget.

already exists in the database, Figure 4.17 shows a listing of available Family instances that
could be added as a value to this Subjectinstance’s relationship to Family.

In summary, for the Stevens Lab, the author developed a Protégé model for the
study. Seedpod automatically generated a relational database and a webapp. The webapp
dynamically generates data entry and editing web forms, data browsing HTML pages in

addition to user management and login pages.

4.9. Conclusion
This chapter describes the prototype application Seedpod developed to

demonstrate the ideas behind the MDA LIMS of this thesis. Detailed documentation on the

Year

Questionnaire

Familly*

X ref

wk phone=

Figure 4.17. A listing of existing Family instances is shown as allowed values to be

65

Select Family from the hist below
O raml. 11
O Family 13
O Family 15
O Fanmily 17
QO fFamily 19

(aad]

close

[

added for this Subject instance.

architectural design, implementation of the components, installation and deployment of
Seedpod are included for the interest of informaticists. The Protégé model and samples
resulting web-based GUI are shown for the perspective of scientific users. Chapter 5 delves

into the transformation method while Chapter 6 analyzes how well Seedpod meets the

LIMS requirements.

66

5. FRAME-BASED MODEL TO RELATIONAL MODEL
TRANSFORMATION

Seedpod users can model their LIMS using Protégé’s graphical user interface (GUI).
Protégé models are frame-based, an object-oriented like representation language (Minsky,
1974). Seedpod stores experiment data in a normalized relational database. On the one
hand, this setup allows Seedpod to take advantage of both Protégé’s expressive modeling
environment and the relational databases’ (RDB) robust storage and retrieval capability. On
the other hand, the modeling language uses a different approach and vocabulary than the
storage language. One must translate the frame-based Protégé model to a relational model
for the RDB. To avoid manual translation for individual Protégé models, a generic
automated process called model transformation is necessary to increase efficiency and
accuracy. This is an example of ModelGen, one of the model management operators
described by Microsoft researcher Bernstein (Atzeni, Cappellari, & Bernstein, 2005;
Bernstein, 2003).

This chapter describes this generalized transformation method for automatic
translation from a Protégé model to a RDB schema. This work was conducted in
collaboration with Dr. John Gennari and Dr. Peter Mork (Gennari, Mork, & Li, 2005). Before
diving into the transformation method, the chapter defines key concepts used such as
frame-based model, model and meta-model. The transformation method consists of a set of

rules described in Section 5.2. Implementation details of the rules are in section 5.3 with

67

M3: Meta- -
eta-Meta-Model Modeling Object Facility

Name : String

i A
/ Instance of \\

M2: Meta-Model | pmoF class MOF Attribute
Name : String Name :String ™~
Type: String
I x
ﬂnstance of Jnstance o,J
M1: Model Class= Patient { (E
Attribute = ', Attribute = | s
: Name = First name ' Name = Last name E s
, Type = String . | Type = String } >
AN
instance of / \ Instance of
. N
MO: Information o -~ '\ [Patient
First name =Joe 3 First name = Jane
Last name = Smith | Last name = Jones

Figure 5.1. Four-layer model architecture shows a model is an instance of a meta-
model. A frame-based model and a relational database schema are examples of
models. Transformation rules are defined using constructs of meta-models.

additional built-in features specific for Seedpod. Section 5.4 shows results of the

transformation comparing the Protégé input with the RDB output.

5.1, Meta-Model and Model Architecture

Automatic transformation relies on the standardized four-layer modeling
architecture of Object Modeling Group (OMG). An understanding of the architecture allows
one to see the abstraction relation between meta-models and models. So first, in this
section, the model architecture, and definitions of frame-based models and relational

models are defined.

68

5.1.1. Four modeling layers of OMG

The transformation method described in the next section is based on OMG’s four-
layer architecture, which includes meta-meta model, meta-model, model, and information
(Figure 5.1). This OMG framework was shown effective in describing a complex information
management system (Kleppe, Warmer, & Bast, 2003; MDA, 2010; Estrella F. , Kovacs, Goff, &
McClatchey, 2001). The four layers are called M0, M1, M2, and M3.

MO is the information layer, containing real instances. For example, a patient
named joe Smith was scheduled for brain surgery on the day of November 21, 2005
performed by Dr Cass. The italicized items are the data stored in Mo.

The M1 layer contains models, for example relational schema, which describes the
information elements. Following the above example, in the M1 layer, Patient is defined
with properties such as First Name and Last Name. The concepts of M1 are the
classifications or definitions for instances in M0. MO relates to M1 through an is-an-
instance-ofrelationship.

M2 defines constructs used in M1. The concepts defined in M1 are instances of M2
layer constructs. Patient is an instance of the C/ass construct. First name and Last name are
defined using the Attribute construct in M2. This layer is also called the meta-model layer.
In other words, M2 provides the language one uses to construct the model in M1, e.g. C/ass,
Attribute, Relationship.

M3 is called the meta-meta-model layer which defines the language used for
specifying meta-models (Estrella F. , Kovacs, Goff, & McClatchey, 2001). A similar pattern of

relationship between M0 and M1, M1 and M2 is observed between M2 and M3. Every

69

element of M2 is an instance of an M3 element. For example, Modeling Class and Modeling
Attribute are instances of Model Object Facility (MOF) (XMIBackendTechnicalBackground,
2006). MOF is the standard M3 layer defined by OMG.

In summary, a given layer is an instance of the layer above it, and the layer above is
a conceptual abstraction, or meta-model of said layer. This four-layer model is transferable
to both frame-based and relational models. Frame-based models and relational schemata
are examples of M1 models for their respective information layers (M0): knowledge base
and database.

Frame-based models and relational models have different design approaches. A
relational model stresses explicit entity type constructors, while a frame-based model uses
attributes to interrelate objects. The two may lead to fundamentally different schemata, or
models (Hull & King, 1987). They do, however, share many similarities that facilitate
automatic transformation. The following description of the two models provides definition
of the terms used in the transformation rules, and helps to intuit the transformation rules

in the next section.

5.1.2. Definition of a relational model

A relational model contains a set of named relations, or tables (Ramakrishnan &
Gehrke, 2002). Each table contains a set of named attributes, or column headings. Each
attribute has a defined primitive type. Primitive types include characters, text, integer,
date, etc. Each attribute can only take on a single value for the type. There can be

constraints on the tables and attributes such as cardinality, default values, and null-ability.

70

A relationship between entities, whether it is is-a, part-of, or association, can be
implemented using foreign keys.

A relational model, or a relational schema, is defined using meta-model constructs:
table, attribute, and foreign key. In this thesis, relational schema and relational model are
used interchangeably. This definition of a relational model is simplified, devoid of concepts
such as procedures, constraints, and indices in addition to vendor specific elements. What

is of concern here is the concepts and their relationships.

5.1.3. Definition of a frame-based model

A frame-based model is similar to an object-oriented model. It consists of a set of
classes, template slots, and facets (Gennari, et al., 2003). In other words, c/ass, slot, and
facet are part of the frame-based meta-model. A class contains a set of template slots. A slot
is described by a set of facets. Classes are organized into a hierarchy in which template
slots are passed on by a parent class to its descendants. Each class has a role, which
declares the class to be either abstract or concrete. The distinction is that concrete classes
can have direct instances whereas abstract classes cannot. Each template slot is a binary
relation linking a class instance to a value. A value is constrained or defined by facets
including type and cardinality restrictions. Values types can be string, integer, float,
instance, class, any, or Boolean. A cardinality restriction may define the minimum
participation requirement of a value to be 1. In other words, facets are properties of slots.
Figure 5.2 shows an example of such a model in Protégé. More details about modeling in

Protégé are found in Section 4.2.

71

A)
<G stevens_v1 2 Protege 3.3.1 (file::C:\Documents%20and%20Settings+haoliSeedpodiseedpodLIMS KnowledgeB ?E&;"i
Ble Edit Projfect Window Tools Help -
‘ |
!:]L}El 4 oL B M B f{%protégé\
Classes @ Slots = Forms & Instances Quenes
L3
| @ stevens_vi 2 Famiy_Study (instance of RDB_CLASS)
| -)
THING Famity_Study Family Study |
+ SYSTEM CLASS
| Famly_study "
v et ! Conrete v
DAL | _ - '
Medication_Info o
Medication | R R
Sample | Name Cardt Type Other Facets
. Sample_aliquot i g state single String A
Biopsy &3 wk_phone single String D
& FamilyStudyID single Strng
&% address sngle Strng)
B8 aty single String v
! B h o B S t
LR 4 LK X
i -
v
| _
THING
i
— . A4
< >
B)
" state (instarnce of RDB_ATTRIBUTE) - X
state
' e (08 Index
|, subs v «
i [Trequired atleast
[[J mudtiple atmost 1
L 4
]
* 0
VARCHAR v 2 Family_Study |
|
TEXT i {
‘ 7] Compound Velus Attribute [auto Increment BUELIC v %
i

A) _ I e o]
Figure 5.2. A screenshot from Protégé. A) shows on the left hand side a class
hierarchy, and the right side definition of a highlighted class. B) is a screen shot of
the slot definition pane from Protégé.

72

5.2, Transformation Rules

The transformation method consists of a set of rules that map entities from a
frame-based model to a relational model (Figure 5.3). Changes in the information layer
require the models to change. However, the meta-models can remain stable; the constructs
used to define the models (class, table, slot, attribute, etc) do not change. Automated

transformation between two models is possible because the rules are defined using terms

M3
Meta-meta-
model
<<i1s written in>>
J/ \\
M2 [TTTEEeT T !
| Frame-based Model i N Relational Model
I Language(E g,Class, Language (E g, Table,
1
] Slot, etc) : Transformrules Attribute, etc)
1
e ——— R=mmmm—— A = 3 -
M1 <<iswritten in>> <<is written m>> <<i1s written in>>|
Protégé frame-based - I 3 1Sce ™ /g
. to-Transfi
model(E.g., Class: § Auto-Transform N L
Patient; Slot: name, DOB) - L hos
<<instanceof>>
MO R
S R
R
| X e Cotb g\ﬂ
Jo
L)

Figure 5.3. Transformation of M0, M1, and M2. The MO level is not transformed.
Seedpod keeps data in the relational database but not in the Protégé side. Automatic
transformation haovens at the M1 level written with constructs defined in M2.

73

from the meta-models, and hence the implementation of the transformation requires no
details of actual models. As a result, there is no need to create ad hoc model-dependent,
one-to-one mappings.

Intuitively, the transformation method is similar to the object-oriented model to
relational model transformation (Niyomthum & Chittayasothorn, 2003). A class in a frame-
based model becomes a table in a relational model. A slot becomes an attribute. However,
the expressivity of a frame-based system necessitates a more complex set of rules than
object-to-relational transformations. Impedance between object-oriented to the relational
model transformation must also be dealt with here (Ambler, 2000). The set of
transformation rules are as follows:

T1. A class C is transformed to either a relational table or view R,, depending on
the class’s role descriptor and position in a hierarchy.
a. IfCis a concrete class, then create a table R, and add a primary key
named ID.
b. If C is a non-leaf class, regardless of whether it is concrete or
abstract, transform C to a table, R.* Then create a view, V,, which is
the union of table R* and all the corresponding tables of C’s
subclasses.
T2. A slot S of a class C is transformed depending on the slot’s value type and
cardinality. S can be either inherited from C’s super-class or owned by C.
a. IfS has a primitive value type, i.e. String, Integer, Float, Boolean, and

Symbol and has cardinality of 0 or 1, create an attribute, A, A, is

74

associated with R, (T1), and has a corresponding relational model
primitive type.

b. IfSis atype instance of a class C', and has cardinality of 0 or 1, create
a foreign key in table R, named F,, which references the primary key
intable R,.

¢. IfS has cardinality multiple (regardless of its type being a primitive
or an instance), create an association table, R, Add foreign key F, in
R referencing R.’s primary key. Also in this association table R,
create A (Attribute(s)) for S according to single cardinality rules in
T2aor T2b.

There are two necessary assumptions about the frame-based model. The first
assumption is that only the default standard meta-model is used. This is an important
assumption because the meta-model is extensible to accommodate user defined meta-
classes. During implementation, non-standard meta-model concepts would not be handled
correctly or not at all.

The second assumption of the transformation method is that every slot is
associated with a class. Slots are first-class objects; users can define slots without
association with any classes. This method necessarily limits the transformation to only
slots associated with classes, because they are the only ones that make sense in the
relational model.

The set of rules defined in this section is generic. In practice, additional rules were

also established when dealing with Protégé’s frame-based model, especially one that has

75

been customized for Seedpod. Implementation of the generic and additional rules is

described in detail with implementation examples in the next section.

5.3. Implementation Details

In Seedpod, the frame-based model is designed in Protégé. The transformation is
implemented in a JAVA program called kb2db packaged inside of Seedpod’s application
code. A Protégé project is input to the program, accessed using the programming API
provided by Stanford. The output is a relational model written as a set of data definition
language (DDL) statements in the form of SQL. The SQL statements conform to the SQL-99
standard (SQL:1999, 2011), which can be executed directly in relational database
management systems (RDMS) that conform to the standard such as PostgreSQL. In addition
to the relational model, the transformation also exports two meta-data tables that serialize
the mapping data between the input Protégé project and the output RDB. This section

describes the data structure, algorithm, and execution of the program.

5.3.1. Data structure

Since the transformation rules are defined in terms of meta-model concepts (e.g.
Class and Slot for frame-based models, relation and attribute for RDB), the Java code only
deals with these concepts. One would not find any specific model instance concept (e.g.
experiment, patient, DOB). The meta-model resides in the SYSTEM_CLS hierarchy of
Protégé. However, the transformation rules in 5.2 are generic with the assumption that the

basic standard meta-slot class definition is used. As described in Chapter 4, Seedpod

76

* Protege2RDB
| Protégé model: RDB model: RDB metadata:
RdbCls*, Rdb, MetaRdbCls
. ' ' ,
P‘,rv(:fgfefp RdbSiot*, Relation, MetaRdbSlot |
SeedpodModel Attribute,
ForelgnKey MadelMap J
e IZ transformation
RDB Metadata Tables:
‘RDB_CLASS Data tables
:RDB_ATTRIBUTE
:THING
Seedpod WebApp
Protege2RDB: rdb metadata: '
SlotMap, MetaRdbCls, |
ClisMap - MetaRdbSlot]

Figure 5.4. Organization of data objects in the transformation JAVA implementation.

expands on the standard meta-class and meta-slot concepts to their respective subclasses
:RDB_CLS and :RDB_SLOT by adding additional properties. Therefore, in the
implementation of the transformation, these additional facets are handled in new Java
classes RdbCls and RdbSlot, which are, respectively, wrapper classes of Protégé API's Cls
and Slot. Allowe(i values and names of these expanded facets are stored in the
SeedpodModel class. For example, -DATABASE-TYPE is added to the Seedpod model’s slot as
a facet so that users can explicitly define database value types to avoid ambiguity (see
Section 4.3). The data objects described in this section are also illustrated in Figure 5.4.
Similar to the Protégé model, there is a collection of Java classes that represent the
RDB model such as RDB, Relation, Attribute, ForejgnKey, efc. It may seem much more

straightforward for the transform to read a Protégé file while writing out a SQL output. It

77

turned out to be necessary to have an object representation of the RDB concepts for two
reasons. One reason is that developers can customize or change the serialization of the RDB
model by implementing additional exporters (examples described later).

The second reason for having an RDB model in the code is that the objects can be
mapped to Protégé objects via an object ModelMap. ModelMap stores these mappings and
serializes them in SQL using classes MetaRdbCls and MetaRdbSlot. Classes MetaRdbCls and
MetaRdbSlot store schema of the meta-data schema defined in Section 5.5.1. They provide
an interface between ModelMap and the actual storage in the database. ModelMap is also a
wrapper object for RdbCls and RdbSiot, which are meta-data object classes used by the
Seedpod webapp at runtime. ModelMap is exported as two meta-data tables as a result of

the transformation, even though it is not part of the transformation algorithm.

5.3.2. Algorithm and implementation details
Before the transformation is run on a Protégé project, one can validate the model
by calling function validatekB(), which uses ProjectTransformValidator. The validator
reinforces the following three rules:
e The Protégé project must be a Clips project, i.e. not OWL or RDF, etc.
e The project uses the default Seedpod meta-class :RDB_CLS for its classes.
e The project uses the default Seedpod meta-class :RDB_SLOT for its slots.
The transformation rules are implemented in the ProtegeZRDB.transform()function

(Figure 5.5) with the following algorithm.

78

Step 0. Initialize: Initializing data structures. Protégé’s C/s is converted to RdbCls,
Slot is converted to RdbSlot.

Step 1. Map inverse slots. Protégé models allow expression of inverse slots. For
example, a class named Study has a slot hasSubjects, which specifies a value collection of
instances of class Subject. Class Subject may then have a slot belongToStudy which
specifies a value of Instance type class Study. Slots AasSubjects and belongToStudy may

then have a defined reciprocal relationship defined using inverse slots in the Protégé

¥
* Transform Protégé (Cls, Slot, Facet)
* to RDB (Relation, Attribute, Foreign Key)
*/
public void transform() {
// Step 0. initialize
init();

// Step 1. Hide one of the inverse slot pairs
maplnverseSlots();

// Step 2. Reify slots with maximum cardinality
reifySlotswithMaxCardinality();

// Step 3. Map cls to relations and views
mapClsesToRelations();
mapClsesToViews();

// Step 4a. Map slots to attributes
mapSlotsToAttributes();
// Step 4b. Map slots to relations
mapSlotsToRelations();
// Step 4c. Map slots to foreign keys
mapSlotsToForeignKeys();
}
Figure 5.5. JAVA code sample from KB2DB transformation outlining the algorithm
step by step.

79

A)

B)

Inverse

belongToStudy

Figure 5.6. A) With only a single one-to-many directional relationship defined between
Study and Subject, one can only safely assume that the inverse relationship from Subject
to Study is also one-to-many. Hence, Study relates to Subject many-to-many. B) The
existence of a one-to-one relationship from Subject to Study restricts that only one-to-
many relationships exist between Study and Subject.

Subject

model (Stanford Center for Biomedical Informatics Research, 2010). Initially, if only
hasSubjects is specified between classes Study and Subject in that direction as illustrated in
Figure 5.6.A, each Study may have more than one Subject, however, we cannot infer if each
Subject may only participate in a Study. In fact, the transformation program assumes a
many-to-many relationship between the two classes. Defining an inverse slot aélds
specificity to the model as illustrated in Figure 5.6.B. The inverse relationship
belongToStudy necessitates the constraint that a Subject may only participate in one

Studly, indicating a one-to-many relationship between Study and Subject.

80

Subject

Figure 5.7. An example of reifying a one-to-many slot to an association entity. The lack
of inverse relation can only allow us to safely conclude that Study relates to Subject in a
many-to-many relationship. Therefore, an association is created in this normalization
step.

This step of the transformation consolidates two slots defined by inverse slot
relationships, keeping only the one with a stricter maximum cardinality. For the example
above, slot belongToStudy is preserved for further transformation, while AasSubjects is
hidden from the following steps. As a result of this step, reciprocal relationships between
two objects are simplified to one.

Step 2. Map slots with maximum cardinality: This is a normalization step. In this
step, slots with maximum cardinality greater than 1 are reified into actual entities for
which each of the slot’s maximum cardinality is no more than 1. The slot’s value type
makes no difference in this case, whether it is a primitive value type or an instance type.
To illustrate this, I use the example from Figure 5.6.A where a directional one-to-many

relationship slot exists between Study and Subject. The slot hasSubjects is reified to a class

81

named Study.hasSubjects.Subject (as in Figure 5.7), following a convention of [source class
name] [relationship slot name][target class name]. In the case of primitive target slot
values, “target class name” is replaced with the name of the value type. This new
association class then has two slots, one named fromStudy relating the new class back to
the source class, e.g. Study, and the other named toSubjects relating the new class to the
target class, e.g. Subject. After this step, the model has neither reciprocating relations nor
one-to-many relations. Each slot in the model has a maximum cardinality of at most 1.

Step 3. Map Cls to Relations and Views: Here we implement rule T1. Each class is

Subject Vertical Fragmentation

Subject
Subject 1D Subject ID | DOB
DOB P
gender ',’
¥
]
Foreign kcy: .
wforence § TestSubject
1
TestSubject
Subject D Horizontal Fragmentation
o8
Gender Subject

Treatment
Name Subject_ID DOB

Underscore indicates primary key TestSubject

—

Figure 5.8. An example demonstrating the difference between vertical fragmentation
and horizontal fragmentation. In vertical fragmentation, part of a child instance data
would be inserted into both the parent table and part into the child table linked with
a referencing key. In horizontal fragmentatlon a child instance is inserted
completely into the child table.

82

transformed to a table if it meets the following criteria: concrete, non-meta, non-system,
and has at least one slot. Abstract classes do not have instances. Therefore, no table is
created. Mappings between classes and tables are captured in Mode/Map.

Class inheritance is transformed using horizontal fragmentation method. In an
inheritance relationship, a child class inherits all its parent class’s template slots. It can be
more specialized than its parent by having additional template slots. Figure 5.8 shows an
example of an inheritance relationship between classes Subject and TestSubject. The child
class TestSubject inherits from Subject slots Subject_ID, gender, and DOB. Then TestSubject
also has additional slots Treatment and Name.

In vertical fragmentation, each class is transformed to a table. The child table
contains only properties that were specific to the child and none of the inherited
properties. It also has a foreign key reference to its parent table primary key. To store a
tuple of data for the child table, inherited property data is inserted in the parent table.
Then the parent tuple primary key is inserted into the child table along with any child-
table specific data. As a result, the parent table is a superset of the child table data.
Subject_IDis maintained to be unique in the parent table.

The vertical fragmentation transformation of inheritance is the most normalized
form. However, the update operation of each child instance would require joins between
two or more tables depending on the number of parents in the inheritance hierarchy.
Horizontal fragmentation, although not perfectly normalized, optimizes access of data one
object at a time. Getting access or update to a child object such as TestSubject requires no

join. The unique primary ID for the object can be solely managed by the table itself.

83

CREATE VIEW “v.TestSubject” AS
SELECT “Subject_ID, “DOB”, “gender”, “Treatment”, “name”
FROM “TestSubject”;

CREATE VIEW “v.Subject” AS
SELECT “Subject_ID”, “DOB”, “gender” FROM “Subject”
UNION
SELECT “Subject_ID”, “DOB”, “gender” FROM “v.TestSubject”;
Figure 5.9. View definition using examples from Figure 5.8. A view is created for
each class. The view definition is a select union statement of the class itself and all
its children classes’ view definitions.

Taking the horizontal fragmentation approach to implementing inheritance makes
querying all instances of parent classes more difficult. For example, the Subject table in
Figure 5.8 does not contain all members of its children’s tables. Therefore, a view is created
for each class, regardless of whether the class is abstract or concrete. The view of a class is
a select union statement of the class’s corresponding table (if concrete) and all of the
class’s children’s views. Figure 5.9 shows the view definition for Subject and TestSubject.
One can query all instances of a single type with a simple select statement from these pre-
defined views. In Seedpod, this is a non-materialized view based on the view
implementation of PostgreSQL.

Step 4. Map Slot to attribute, or association tables. Transformation of slots, rule T2a,
is implemented in this step. At this point, as a result of step 2 above, all slots in the model
(in memory) have maximum cardinalities no greater than 1. It is fairly straightforward that
primitive type slots are transformed directly to RDB attributes. The Aftribute is added to
the corresponding table of the Slot container C/s. Slot descriptions are transformed into

comments for attributes. Slot to attribute mappings are added to the ModelMap object. T2c

84

is implemented in Step 2above. Method mapSlotToRelations() merely wraps up the step by
creating a mapping in ModelMap from the slot to the new association table. Finally, slots of
instance type and singular cardinality are transformed to foreign keys in the relational
model (T2b). Appropriate mappings are created in the ModelMap between these slots and

foreign keys.

5.3.3. Seedpod specific implementation

The previous section describes the general algorithm implemented for the
transformation. In this section, a few Seedpod specific implementations in the
transformation are described. The first one is transforming specific Protégé value types to
PostgresSQL data value types. This is specific to the frame-based model and database that
one chooses for the system. The second one is transforming in-line complex value types.
In-line complex value types are used to accommodate complex compound data without
creating new object classes.

Figure 5.10 lists Protégé types and their mappings to PostgresSQL data types. On the
Protégé side, types other than Any, Class, and Instance are primitive types. There is no
perfect one-to-one correlation between all of the types. The logic of the conversion is hard
coded in the transformation program. Some of the mappings are strict such as Integer to
Integer. The transformation employs user-specified RDB types as long as they do not
violate allowed mapping rules. For example, user-specified RDB type Integer would be
ignored if the Protégé type was Boolean. On the other hand, for RDB types with no
corresponding Protégé types, such as Date, Time, Timestamp, and Auto_increment, user

specification is honored over Protégé types. Protégé Symbol is transformed to Varchar(n)

85

KB_Type DB_Type
Any
Class
Instance Relation, Foreign Key
Float Numberic
Integer Integer
Boolean Boolean
String Varchar(n), text, character
Symbol Varchar(n)
Date
Time
Timestamp
Auto_increment (serial4)

Figure 5.10. This table shows the value types conversion between a Protégé
knowledge base and a relational database. Not all relational database types,
which may vary depending on the database used, are listed here. Options listed
are what are provided to the users as options in the Protégé user interface.

and 7 is determined based on the longest allowable symbol the user has entered. A default
mapping exists for every Protégé value type if a user specification does not exist or make
sense. For example, if the modeling user does not specify the specific DB type for a Protégé
Stringtype, then it is automatically transformed to Varchar(255).

Not all complex data types i.e. data types with multiple attributes, become first
order classes in the Protégé model. A user may reuse these types by defining them only
once. For example, geolocations involving latitude and longitude is represented as a
complex data type class with two slots. This class is flagged in the model as an in-line data
type. For example, a hospital has a location slot of instance type geolocation. Upon
transformation, instead of creating a table for geolocation with a foreign key in hospitalto
geolocation, each of the slots in geolocation is inserted into the hospital table. The new

attributes are renamed to Jocation.latitude and location.longitude.

86

#

<4 stevens_v1.2 Protégé 3.3.1 ({file:\C:\Docur

Fe Edit Project .ardo Seedpod Help
e Seedpod Project

T
D B ot’ E‘ Convert Current Project

O Classes | mm ng[- : \&' date Project

-~ | Export To SQL Schema

® stevens_v1.2

S

* SYSTEM CLASS
) Family_Study
= O Subject
C Autoimmune_Disease_Subject
C NOP_Subject
| . DAl —
3 (O Medication_Info

gf" TTHING -
|
|

At

() Medication i
(Sample
i = Sample_aliquot
E O WB_sample

Figure 5.11. Protégé screenshot of Steven’s lab model with an expanded Seedpod
menu plug-in.

5.3.4. Executing Protégé2RDB

There are two ways to execute the transformation program. One is through a
command prompt, running ProtegeZRDB.Application given three arguments: [Path to
Protégé Project] [RDB name] [Output file directory]. The problem with this approach is that
it assumes the input Protégé model is valid, modeled using Seedpod’s meta-classes
!RDB_CLSand :RDB_SLOT.

Users can also access the transformation capabilities through Protégé’s graphical
user interface (GUI). A Protégé project plug-in (Protege Developer Documentation) was
developed to wrap the transformation functionalities to work in the Protégé GUI as a new

Seedpod menu as shown in Figure 5.11. The menu contains the following functions:

87

e (Create new Seedpod projects with pre-built-in Seedpod meta-classes
:RDB_CLS and :RDB_SLOT. The users will build models using these classes.

e Convert existing non-Seedpod projects into Seedpod projects. This converts
all of the classes of type :STANDARD_CLS and :STANDARD_SLOT to :RDB_CLS
and :RDB_SLOT, respectively.

¢ Validate existing project to ensure the classes use appropriate meta-classes.

e Transform and export current project. Transformation error and warnings

messages are displayed at the end of the run.

54 Results

The transformation program ProtegeZRDB results in two SQL files: database schema
definition and metadata table definition. Examples of these two files are shown in this
section using examples from the experiment model developed for the Stevens Lab’s lupus
study. Figure 5.12 shows the model class hierarchy in the left panel with
Autoimmune_Disease_Subject highlighted. The right panel center lists this class’s template

slots.

5.4.1. Output part 1: database definition
An Rdb class object is created as part 1 of the transformation. This object is
serialized by a RdbSchemaWriter for a SQL output. However, if one wishes to write the

schema to an UML format or generic XML format, one would just need to extend the

88

generic class RdbWriter and implement the constructor and a serialize(PrintStream)

function.
< stevons_v1 2 Protegé 331 (fite \C s3%20and%20Setting: pod\seedpodLIMS\KnowledgeB, =]
| Bl EQR PBroject Mgndow Tocks Helb - e [- P
De O 4 &5 3% mad &% @prot@ge
® Cosses | W Sots I Fos @ Instorces M Quaesl
For Project @ stevens_vi 2 tor {lsss & Autommune Disease_Subject (instance of RDB_CLASS) "
Chass Hi raschy o v o X v HYER AYSIGTIED LART Do wakin
Casst ranky o @ ¥ - v
| THING || Autaimmune_Disease_Subject {
9 SYSTEM-CLASS
@ Fonh sy ! oo !
- © Subject Tomaaee .~ 7T |
;imm&m_sﬁm!‘_._f_-#_m E;} R “whwi
BLE,
! :wm Template Slots _ o = Py - o om te P
® RAY_Subject | Name Can Type Other Facets
1 ® THY_Subject 1| towt Samples muipls Instance of Sample Inverse-siot=sample belang to subject [af
@ NOP_Sublect Imkm mulipls Symbot allowed-values={ _Native, P
@ 04l y Khh:nmn\znts sngle Strng }
] @ Madication_Info ; bt _pame snge Sting |
® Madication 't 4 10_prefix sngle Symbo! allowed-values={PLE, JRA,NOP,50C RAY,THY} de. [
I — Jom ot 10 soge st
4+ @ Sample_aiquot) dob shge String },
| ® Bopsy luuapm muftipls Instance of Biopsy trwerse-siot=bipsy belongs to subject
1 ’Mﬂm_mme shgle String
g Retation sge Symbel aliowed-vaheesm{A-Subject M-Mother F-Father,R
‘M Sex snge Symbol allowed-vahse-{M F} |
I ljm belong_to_famly requred Instence of Famiy_Study inverse-siotFaimiy Members |
| tne} SubjectiD singe Integer !
{ma cansent single Bogizan
1 jm onset_dato snge Strng 1
|- biopsy_comment smglo String |
| | pregnancy single Boolean 2
] o ref_phys snge Strmg Wl
ll m e doaten. e Vobmome ¥
1 g btasaurce 5 ¢ € € ugesion A oe & ¥
3 {
i i
) I| wvaciass
]
b e ek 2
T 3
M loimee
Suertases & W
;° Subject || vatacounce A ¢ & &
i
| Ir‘] e e 2

Figure 5.12. A screenshot of Steven’s Lab Protégé model is shown here. This figure
shows the template slot of the highlighted class Autoimmune Disease_Subject.
Template slots labeled with bracketed blue rectangular bricks are indicated as
inherited slots from parent class, Subject. Regular blue rectangular bricks indicate
this class’s custom slots.

The class Autoimmune_Disease_Subject in Figure 5.12 is a concrete and non-leaf
child class of Subject. According to transformation rule T1a, it is transformed to a table

with the same name defined with the SQL statement shown in Figure 5.13. The table has a

89

default primary ID. In the Seedpod system, this primary ID is a universal unique ID
maintained by the :Thing table (more about the :7Thing table in the next section). The table
contains attributes that correspond to slots with simple types defined in the Protégé class,
which includes inherited slots from the parent class, e.g. first_name. Each attribute has the

same name as its slot.

CREATE TABLE "Autoimmune_Disease_Subject"

("ID" INTEGER,

"comments" VARCHAR(50)DEFAULT NULL,--AUTO generated default value

"Other_ID" VARCHAR(50)DEFAULT NULL,

"SubjeCtID" INTEGER,

"belong_to_family" INTEGER NOT NULL,

"Relation" VARCHAR(12) DEFAULT NULL CHECK ("Relation" IN ('A-Subject’, '"M-Mother", 'F-
Father', 'R1-Sibling_1', 'R2-Sibling_2', 'R3-Sibling_3')),

"first_name" VARCHAR(50) DEFAULT NULL,

"ID_prefix" VARCHAR(3) DEFAULT NULL CHECK ("ID_prefix" IN ('PLE', 'JRA, 'NOP", 'SOC',
'RAY', 'THY')),

"Sex" VARCHAR(1) DEFAULT NULL CHECK ("Sex" IN ("M', 'F')),

"dob" DATE,

"last_name" VARCHAR(50) DEFAULT NULL,

"pregnancy” BOOLEAN DEFAULT FALSE,

"biopsy" BOOLEAN DEFAULT FALSE,

"biopsy_comment" VARCHAR(50) DEFAULT NULL,

"Disease" VARCHAR(4)DEFAULT NULL CHECK ("Disease" IN ('SLE', 'MCTD")),

"transfusion” BOOLEAN DEFAULT FALSE,

"consent" BOOLEAN DEFAULT FALSE,

"dz_duration" INTEGER ,

"age_at_onset" VARCHAR({50)DEFAULT NULL,

"ref_phys" VARCHAR(50) DEFAULT NULL,

"onset_date" DATE,

"birth_order" INTEGER DEFAULT 1,

"dx_date" DATE,

PRIMARY KEY ("ID"));

Figure 5.13. Sample SQL table definition of the transformation for class
Autoimmune_Disease_Subject shown in Figure 6.13. Comments auto-generated at
the end of each line, such as “~ AUTO generated default value”, are deleted for
visual clarity. Names of tables and attributes are in quotes to preserve the original
Protégé model’s capitalization and space. This implementation is specific for
PostgreSQL. Some other database may use other characters for the same purpose.

90

CREATE VIEW "v.Autoimmune_Disease_Subject" AS
SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",
"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "Autoimmune_Disease_Subject"

UNION
SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",
"Sex", "Relation”, "ID_prefix", "Other_ID", "biopsy_comment", "transfusion”, "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.PLE_Subject"

UNION
SELECT "iD", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",
"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion”, "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.SOC_Subject"

UNION
SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",

"Sex", "Relation", "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",

"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent", "onset_date"
FROM "v.RAY_Subject"

UNION
SELECT "ID", "first_name", "last_name", "dob", "SubjectID", "belong_to_family", "comments",
"Sex", "Relation”, "ID_prefix", "Other_ID", "biopsy_comment", "transfusion", "pregnancy",
"age_at_onset", "dx_date", "ref_phys", "dz_duration", "Disease", "birth_order", "biopsy",
"consent”, "onset_date"
FROM "v.THY_Subject";

Figure 5.14. This is an example of a view definition for a non-leaf concrete class in
SQL for Autoimmune_Disease_Subject.

An attribute type is determined according to mappings listed in Figure 5.10. For
example, SubjectID has type Integer. Type Varchar(n) has default length, or n, of 50. The
transformation adds a comment when this default is used. Attribute Sex is an example of
transformation of Protégé type Symbol to SQL type Varchar(n). Symbols in a Protégé model
can have predefined values such as “M” and “F” for male and female in this example.

Therefore, type Symbol becomes type Varchar(1) since 1 is the longest symbol option. A

91

ALTER TABLE "Autoimmune_Disease_Subject"
ADD CONSTRAINT "fk_belong_to_family" FOREIGN KEY
("belong_to_family")

REFERENCES "Family_Study" ON DELETE CASCADE ;

Figure 5.15. Here is an example of a foreign key referential integrity constraint
definition. Foreign key belong to_family represents a relationship from
Autoimmune_Disease_Subjectto Family_Study.

check constraint follows that limits the value input such as cueck ("sex" 1N ('M', 'F")).
Relation is another example of Symbol type.

According to rule T1b, a view is created. An example of the view definition for
Autoimmune_Disease_Subject can be found in Figure 5.14, Because the transformation
chooses to use horizontal fragmentation to represent inheritance, the user cannot query
from all instances of autoimmune disease subjects if this view is not defined. Finally, this
view is stored as a select statement and never materialized in PostgreSQL. Depending on
the specific database engine used, this view may or may not be materialized.

Slots of instance type define relationships between the container class and the
destination class. For example, belong to_family is a relationship slot in
Autoimmune_Disesase_Subject. 1t is an inverse relationship of Family Members in class
Family. Following implementation step 1, Family_ Members is hidden since
belong to_family is sufficient to describe this relationship. A foreign key with the same
name of Integer type is defined in the Autoimmune_Disease_Subject table. Its referential
integrity is established after all the tables are defined with an ALTER TABLE statement

(Figure 5.15).

92

A slot with multiple value cardinality represents a one-to-many relationship
regardless of whether the value type is an instance or a simple type. Slot Race is an
example of that. Each subject can have one or more race descriptors. The value type for
Race is symbol, which is transformed to type varchar(n). Figure 5.16 shows the SQL
statement that creates a table for the relationship between Autoimmune_Disease_Subject
and race. This table contains a foreign key to the subject table. Each subject ID may be
associated with one or more race symbol constrained to a list of options. Each tuple in this
table contains a unique pair of subject ID and race symbol, which is defined as a

combination primary key.

CREATE TABLE "Autoimmune_Disease_Subject.Race.Symbol"(
"TO.Symbol.403" VARCHAR(32) NOT NULL
CHECK ("TO.Symbol.403" IN ('American_Indian/Alaska_Native',
'African_American/Black','Native_Hawaiian/Pacific_Islander, 'Hispanic',
'Asian’, 'Caucasian’, 'Other')),
"FROM.Autoimmune_Disease_Subject.404" INTEGER NOT NULL,
PRIMARY KEY (
"TO.Symbol.403",
"FROM.Autoimmune_Disease_Subject.404")

);

ALTER TABLE "Autoimmune_Disease_Subject.Race.Symbol"
ADD CONSTRAINT "fk_FROM.Autoimmune_Disease_Subject.404"
FOREIGN KEY ("FROM.Autoimmune_Disease_Subject.404")
REFERENCES "Autoimmune_Disease_Subject" ON DELETE CASCADE;

Figure 5.16. An example SQL statement showing creation of an association table for a
one-to-many relationship called race between Autoimmune_Disease_Subject and
Symbol,

A more complex many-to-many relationship transformation is illustrated by slot
Samples which has Instance type of class Sample in Figure 5.13. Each subject can have

multiple samples collected for him. After the source and target tables are defined,

http://TO.Symbol.403
http://TO.Symbol.403
http://FROM.Autoimmune_Disease_Subject.404
http://TO.Symbol.403
http://FROM.Autoimmune_Disease_Subject.404
http://fk_FROM.Autoimmune_Disease_Subject.404
http://FROM.Autoimmune_Disease_Subject.404

93

CREATE TABLE "Autoimmune_Disease_Subject.Samples.Sample"(
"TO.Sample.406" INTEGER NOT NULL,
"FROM.Autoimmune_Disease_Subject.407" INTEGER NOT NULL,
PRIMARY KEY(

"TO.Sample.406",
"FROM.Autoimmune_Disease_Subject.407"

)
);

ALTER TABLE "Autoimmune_Disease_Subject.Samples.Sample"
ADD CONSTRAINT "fk_TO.Sample.406"
FOREIGN KEY ("TO.Sample.406")
REFERENCES "Sample" ON DELETE CASCADE;

ALTER TABLE "Autoimmune_Disease_Subject.Samples.Sample"
ADD CONSTRAINT "fk_FROM.Autoimmune_Disease_Subject.407"
FOREIGN KEY ("FROM.Autoimmune_Disease_Subject.407")
REFERENCES "Autoimmune_Disease_Subject" ON DELETE CASCADE;

Figure 5.17. A many-to-many relationship is transformed to an association table with
foreign keys that reference back to source and target tables.

Autoimmune_Disease_Subject and Sample respectively, an association table called
Autoimmune_Disease_Subject.Samples.Sample is defined ;:onsisting of two foreign keys
referencing the source and target table primary keys. Unique pairs of the two foreign keys
make up the primary key for this association table. Figure 5.17 shows the SQL definition

statements.

5.4.2, Output part 2: Mapping meta-data

The second output of the transformation is mappings between the frame-based
model and the relational model. It is called Mode/Map in the JAVA transformation
program. This mapping allows programs that use this mapping information to reconstruct

the source and target models and mappings between them. Detailed demonstration of the

http://TO.Sample.406
http://FROM.Autoimmune_Disease_Subject.407
http://TO.Sample.406
http://FROM.Autoimmune_Disease_Subject.407
http://fk_TO.Sample.406
http://TO.Sample.406
http://fk_FROM.Autoimmune_Disease_Subject.407
http://FROM.Autoimmune_Disease_Subject.407

94

usage is described in Chapter 4. This ModelMap object is serialized into SQL statements
with examples shown in Figure 5.18.
Class mappings metadata is stored in the :RDB_CLASS table while slot to attribute

mapping data is stored in the :RDB_ATTRIBUTE table. Figure 5.19 and Figure 5.20 illustrate

INSERT INTO ":RDB_CLASS" (

"cid", "framelD", "name", "userDefinedName", "clsType", "parent", "primaryKey",

"inline", "isConcrete", "documentation", "browserPattern", "tableName",

"viewName", "javaClass")

VALUES (

DEFAULT, 11515, spAutoimmune_Disease_Subject.Samples.Samplesp,
DEFAULT , sp:RDB_CLASSsp, sp:REIFIED_SLOT_CLSsp, $sp$$sp$, false,
true, $sp$$sp$, spAutoimmune_Disease_Subject.Samples.Sample VAL(id)sp,
spAutoimmune_Disease_Subject.Samples.Samplesp, DEFAULT , DEFAULT);

INSERT INTO ":RDB_ATTRIBUTE" (

"aid", "framelD", "domainCls", "name", "userDefinedName", "slotType",
"protegeValueType", "defaultValues", "allowedCls", "slotInverse",

"numericMin", "numericMax", "cardinalityMin", "cardinalityMax", "nullable",

"isMultiple", "unique", "index", "symbolChoices", "unit", "documentation",
“rdbAttributeName", "rdbTarget", "dbValueType", "dbValueLength",
"isAssociated", "expression", "viewSequence", "formwidget",

"formWidgetParam", "viewWidget", "viewWidgetParam")
VALUES (

DEFAULT , 11227, spSubjectsp, spID_prefixsp, spid_prefixsp,
sp:RDB_ATTRIBUTESsp, spSymbolsp, $sp$$sp$, spssp$, $sp$$sp$, NULL
,NULL, 0, 1, true, false, false, false, spPLE JRA NOP SOC RAY

THYsp, $sp$$sp$, $sp$$sp$, spID_prefixsp,
sp:RDB_ATTRIBUTE(ID_prefix)sp, spVARCHARSsp$, 3, true, $sp$$sp$, 0.0,
SpSELECTsp, sp3sp, spSTRINGSspS, spssps);

Figure 5.18. Examples of ModelMap serialization in SQL statements. These statements
insert data tuples into the :RDB_CLASS and :RDB_ATTRIBUTE classes respectively.
(“sp” is used to mark the beginning and end of a string instead of double or single
quotes.)

N

file:///RDB_ATTRIBUTE

95

ald frameld domainCls name userDefinedN slotTy protegeValue defa affowedCls numt nume aullabk isMultipl unlque Index symboiChoite: unit
PK} Integer character var character varylay text charas character var text charatter var character var nums nume integer lnteger doalear boatean booitan boolean text charay
11597 THY_Subject TO Sample 483" RO8_Instance " Sample . 1 1 FALSE FALSE FALSE FALSE "

2 11579 $OC_Subject TO Sample 465" RDB_Instance " Sample " 1 1 FALSE FALSE FALSE FALSE *
3 11264 NOP Subjec Other_iD " RDB_String o " 0 1 TRUE FALSE FALSE FALSE °
4 11086 THING status ° RDB_String " N 0 1 TRUE FALSE FALSE FALSE "
S 11574 Sample sam FROM Sample <" RODB, Instance Sample " 1 1 FALSE FALSE FALSE FALSE .
6 11146 CD4_sample sampte_ali_use " RDB_Boglean " ° . 0 1 TRUE FALSE FALSE FALSE "
7 11290 EBY_sample sample_status " RDB, Symbo! " " [] -1 TRUE TRUE FALSE FALSE location_und "
8 11442 Dry_Peltet_s sample " RDB_ Instance " Sample “ 1 1 FALSE FALSE FALSE FALSE "
9 11145 SOC_Subjeci transfusion Transfusion RDS_Boolean " * . 0 1 TRUE FALSE FALSE FALSE "
10 11405 Dry_Pellet_s sample_used_fi" RD8_String " 0 1 TRUE FALSE FALSE FALSE *
11 11313 NOP_Subjec dob Do8 RDB._ String o - 0 1 TRUE FALSE FALSE FALSE "
12 11278 DAl ast ESR(<10} RDB_Integer L N 0 1 TRUE FALSE FALSE FALSE "
13 11302 OAl 085 B RDB_ Integer " " 0 1 TRUE FALSE FALSE FALSE "
14 11138 SOC_Subject bropsy Biopsy? RDB_Boolean " " N 0 1 TRUE FALSE FALSE FALSE "
15 11558 PLE Subject TO Biopsy 444 " RDB_Instance " Biopsy " 1 1 FAISE FALSE FALSE FALSE °
16 11146 $BMC_samp sample_all_use * RDB, Boglean " " " 0 1 TRUE FALSE FALSE FALSE *
17 11100 Medication_ medications " RDB_Instance ' Medication medication 0 -1 TRUE TRUE FALSE FALSE "
18 11213 PBMC_samp sample_used_b" RDB_ Instance " SEEDPOD_U'" 0 1 TRUE FALSE FALSE FALSE

19 11226 PLE_Subject burth_order birth order RDB._ Integer 1" " 0 1 TRUE FALSE FALSE FALSE

20 11559 PLE_Subject FROM PLE_Sub; * RDB_Instance * PLE Subject " 1 1 FALSE FALSE FALSE FALSE *
21 11408 CD4_sample sample_used fi” ROB, String tor " 0 1 TRUE FALSE FALSE FALSE "
22 11342 CD4_sample comments Comments RDB_String o " 0 1 TRUE FALSE FALSE FALSE *
23 11448 THING D " RDB_ String ® N 0 1 TRUE FALSE FALSE FALSE "
24 11222 PLE_Subgect biopsies " RDB_Instance " Biopsy " 0 -1 TRUE TRUE FALSE FALSE .
25 11425 RAY_Subject Refation " RDB_Symbo! ° " N 0 1 TRUE FALSE FALSE FALSE A-SubjectM-*®
Figure 5.19. Screenshot of the :RDB_ATTRIBUTE table from PostgresAdmin.

these metadata tables with screenshots of the tables filled with data from PostgresAdmin.
The table :RDB_CLASS shows information of classes from the Protégé model and what they
are mapped to after transformation in the relational model. For example, a class name is
mapped to table name and a view name in the same tuple. Similarly, the table :RDB_SLOT
contains metadata about each slot mapping to attribute, such as cardinality, allowed
values, user defined names, attribute names, database types, etc. This metadata
information is necessary for constructing queries to the data object tables. Refer to Chapter

4 for detailed usage discussion.

5.5. Conclusion
This chapter covered the theoretical and practical aspects of transforming a frame-

based model to a relational model. The definition of the two models and transformation

96

<id framelD name userDefin clsType parent primaryKe inline isConcrete doc b (Patte tab!

[PK} in integer character varying(64) text character var character var character 1 boolean boolean text character var characterv
DIISIS Autoimmune_Disease_Subject.Sampl ‘RDB_CLASS :REIFED SL(" FALSE TRUE " Autoimmuni Autoimmi
2 11557 PLE_Subject.biopsies.Biopsy -RDB_CLASS -REIFIED SL(” FALSE TRUE " PLE_Subject. PLE_Subje
k) 11225 ANNOTATION AML_CLASS XML D FALSE TRUE " ANNOTATIC ANNOTAT
4 11566 RAY_Subject.biopsies.Biopsy :RDB_CLASS :REIFIED_SL(" FALSE TRUE " RAY_Subject RAY_Subje
5 11448 SPATIAL ABSOLUTE_CLASS :STANDARD :SPATIAL .THING FALSE TRUE " SPATIAL_AB!

6 11274 Plasma_sample :RDB_CLASS Sample_aliq iD FALSE TRUE " Plasma_sam Plasma_sa
7 11185 Subject :RDB_CLASS :THING THING FALSE FALSE ° Subject VAL

8 11106 THY Subject ‘RDB_CLASS Autoimmum ID FALSE TRUE " THY_Subject THY_Subje
9 11262 NOP_Subject ‘RDB_CLASS Subject 1D FALSE TRUE " NOP_Subjec NOP_Subj:
10 11533 EBY_sample.sample_status.Symbol :RDB_CLASS :REIFIED_SLC" FALSE TRUE " EBY_sample EBY_samp
11 11536 GRANS_sample.sample_status.Symbc :RDB_CLASS :REIFIED_SL(" FALSE TRUE " CRANS_sam CRANS_sa
12 11158 Biopsy ‘RDB_CLASS THING iD FALSE TRUE " Biopsy VAL(i Biopsy

13 11477 REFIED_SLOT CLS :RD8_CLASS 'SYSTEM-CL :THING FALSE FALSE " ‘REIFEED_SL(

14 11299 DAl ‘RDB_CLASS :THING 1] FALSE TRUE SLE Disease DAI VAL(id) DAl

1 11¥0a MNP Couhlam Pamalar Camanta AN SACT DRRIPR P20 FAICF PRI L TUF Coblace ME Cohia
Figure 5.20. Screenshot of the :RDB_CLASS table from PostgresAdmin

rules in the first two sections provide a generalized methodology. The algorithm is then
tested in Seedpod with a JAVA program that transforms a Protégé frame-based model to
relational database definition that could be executed successfully in a PostgreSQL database.
Detailed implementation steps are described, including additional Seedpod system specific
implementation to bridge the difference between the two models. The transformation
results in a database definition and metadata written in SQL. The resulting SQL statements
can be executed in relational database management systems such as PostgreSQL.

The transformation algorithm is generic. The transformation program for a specific
frame-based model interface, such as Protégé, only needs to be built once. All future
transformations can be done fully automatically. Within the scope of Seedpod, this allows
the system to take advantage of Protégé’s' modeling GUI in ad&ition to the data storage
power of a relational database. The actual usability of the resulting relational database and

completeness of the model translation are evaluated critically in Chapter 6.

97

6. CRITICAL ANALYSIS

LIMS requirements that are pertinent to this thesis project are discussed in Chapter
2. The five requirements are as follows:

R1. The system must allow scientific users to manage large and complex
datasets for ease of retrieval and organization. Data may be multimedia with metadata.
Data may also have complex relationships.

R2. The system must support remote data management, allowing multiple users
and multiple disciplines to work together.

R3. The system must support scientists to get involved and contribute in the
process of the system design, development and testing process.

R4, The system must keep development time, effort, and cost low.

R5. The system should lower the complexity to deal with system evolution.

Various existing solutions are evaluated against this set of requirements in Chapter
3. In this chapter, Seedpod is evaluated against the same set of requirements. Seedpod
implementations for the Stevens Lab’s Lupus Research Lab (LRL) and Ojemann’s Single Unit
Recording Lab (SUR) are used as examples throughout the chapter. Additional evaluation

notes are made about the system which point to directions of future work on Seedpod.

98

6.1. Two Seedpod LIMS examples

Both Ojemann’s SUR and Steven’s LRL are described in Section 2.1. Their data
management needs, both technical and social, were distilled to the requirements above.
Seedpod is not designed to be the best all around LIMS but to meet these requirements
using a model-driven approach. Seedpod used SUR as a motivating problem throughout its
version one development and testing. When Seedpod was more mature in its second

iteration development, it was applied to LRL for testing.

6.2. Evaluation against the requirements
The author developed both implementations of Seedpod to LRL and SUR with no
real-world users. The following evaluation is therefore based on personal critical opinion

of the design, usage, and performance of Seedpod.

6.2.1. R1

The system must allow scientific users to manage large and complex
datasets for ease of retrieval and organization. Data may be multimedia
with metadata. Data may also have complex relationships.

In lieu of a flexible XML data store such as in Teranode, Seedpod opted for using a
relational SQL database. Both storing and retrieval of large datasets are robust, efficient,
and fast. The technology has been well tested in the past two decades in commercial

products and scientific products.

99

SUR collects patient clinical data, time series data from multiple electrodes, and
surgical photos. To accommodate multimedia data, Seedpod’s database manages metadata
for multimedia data, such as file name, author, and a pointer to the actual data file. The
actual data is stored as files and managed by a file system. A user does not have to
manually manage the physical file structure, but instead gains the ease of accessing the file
via metadata stored in the database. Multimedia data is integrated with other numerical or
textual data without breaking a workflow. This technique has been used by many
information management systems.

The use of Protégé for modeling LIMS is to provide ease in modeling complex
relationships between data objects. Users do not need to be concerned with the actual
implementation of the relationship. These relationships may be hierarchical parent-child
relationships, containment relationships, or complex relationships with attributes. For
example, LRL has several different patient subjects. The class definition is easily re-used by
using a hierarchical structure to organize its control subject and various experiment
pfotocol subjects.

For the most part, Seedpod satisfies this requirement for the purpose of data entry
and some data retrieval. Its web-based GUI allows the user to manage multimedia data
along with tabular data in an object-oriented fashion. Relationships between objects
provide navigational workflow between the pages in the web-based GUI. However, since
Seedpod cannot anticipate how users would need to retrieve data for analysis or complex
visualization, it does not come with pre-packaged SQL join queries. These join queries are

highly custom for each application. They also require someone that is well versed in

100

writing relational queries. Then a custom web page for the visualization would need to be
implemented. Seedpod is mostly concerned with getting data in and not data analysis and

complex visualization.

6.2.2. R2

The system must support remote data management, allowing multiple
users and multiple disciplines to work together.

Seedpod’s server application and database should be installed on a secured server.
Users can enter or access data from anywhere with an internet access. Multiple users can
add or modify data at the same time without worrying about data files out of synch,
because the content of the web pages is dynamically generated from the shared database.
For example, LRL consists of scientists in two locations: Seattle Children’s Hospital and UW
South Lake Union Lupus Laboratory. The former collects clinical data and the latter
provides wet lab data. They need to share patient information and ultimately combine the
data for analysis. Remotely managing and accessing up-to-date data would reduce data
error and the inconvenience of manually synching data.

A Seedpod system user belongs to one of the three user groups with certain
privileges. For exar'nple, an administrator user can have all data access and the ability to
add other users. A power user can edit all data. A collaborator can read data only. A
collaborator may be someone from outside of the lab that would like to share and access

the data.

101

While Seedpod satisfies this requirement, its implementation for different user
access is only implemented for the purpose of demonstration. A working system may
require the ability to allow an administrator to create new user groups and manage data
access for the different groups. Additionally, it has become increasingly important in the
scientific research community to track the provenance of data, which is meta-data about
how each piece of data has evolved in the process from collection to analysis. The complex

nature of the problem is beyond the scope of this project.

6.23. R3

The system must support scientists to get involved in and contribute to
the process of the LIMS design, development and testing process.

Scientific users are more knowledgeable about the data they collect and the domain
they study. Therefore, they may be more adequate in modeling the LIMS. As described in
Seedpod’s development workflow in 4.7, scientists participate in steps 1 and 3 of the
development process for modeling and testing. The caveat is that the modeling
environment may not be the most intuitive interface or best choice of expressive language.
If they are not familiar with the modeling environment, they could learn to read the model
for accuracy while working with informaticists to develop the model. While we were
working with the graduate students in SUR, they were able to check the Protégé model for
correctness. Communications about the data model between scientists also started to clear
up when people could use the same vocabulary in the model. Instead of an illegible

relational database DDL document, scientists may feel more in control of the development

102

process by using the more intuitive graphical modeling environment. Scientists can feel
more involved working with the informaticists.

Seedpod uses Protégé, which is a knowledge-base management tool, for modeling.
The usability of the tool’s GUI is debatable. However, observation and experience of
working with several scientists point to the fact that scientists are very willing to learn to
use Protégé and find the modeling concepts easily understandable.

The real hurdle of using Seedpod is that one may not be able to see how the system
works or if the LIMS requires tweaking until one has gone through the three steps
described in 4.7. What Seedpod needs is an interactive development environment (IDE)
that provides previews and debugging tools to help the modeling user see what the
resulting system GUI would look like while working on the model. This IDE would function
as an emulator, allowing users to see affects of changes made to the LIMS model. For
example, it would be helpful to the users to see the difference between the different GUI
widgets. Development of an IDE can only be worthwhile as a next step research and

development after the whole Seedpod system has been shown to provide value.

6.24. R4

The system must keep development time, effort, and cost low.

Seedpod is built using only open-source technology, which includes the modeling
environment Protégé, the relational database PostgreSQL, and the web server Tomcat. In
terms of software and hardware, a PI would only need to pay for the computing instrument

that houses the web server and database server.

103

The development process is shorter using Seedpod from modeling to deployment.
The time passed between scientists testing and informaticists debugging can be short for
this quick iterative development cycle. It took the author 2-3 hours to interview the LRL
scientists in 3 interview sessions, and then less than 2 hours to create the initial data model
in Protégé. A majority of the time is spent on developing the model and getting it right.
Setting up the system to auto-generate the relational database and then deploy the web
service is simple and straight forward. Additional time may be needed to debug the model
and customize GUI widgets.

From the perspective of an informatics team, Seedpod is a system that can be
adapted for multiple laboratories’ data management needs. Various laboratory
implementations of Seedpod differ only in their models. More effort can be spent on
customizing Seedpod for specific needs. The server application and model transformation
pieces of Seedpod remain the same for both SUR and LRL Seedpod applications. The major
difference is in the starting Protégé models.

A traditional web-based application development team such as SIG would consist of
someone with domain knowledge, an expert in relational database, a system admin, and a
web application software engineer. Seedpod requires far less expertise and knowledge for
it to deploy, which means the system of complex computing tools behind it is made
available to more naive users with little or no computing background. In essence, Seedpod
drastically lowers the threshold to adopt and develop a new LIMS.

Seedpod satisfies this requirement for the most part. However, customization of

Seedpod may or may not be an expensive operation. For example, customizing a

104

visualization widget for SUR time series data is not a trivial task. Seedpod supports the
widget development with a simple plug-in frame work. A software engineer would then
need to write a piece of server-side code that implements the Widget programming
interface. Then the widget would need to fetch the time series file and render an image in

for the web. This process requires the engineer to be very familiar with Seedpod.

6.2.5. R5

The system should lower the complexity to deal with system evolution.

There are three approaches for evolving Seedpod. The first approach is to make
changes directly on the model, then re-interpret the model changes into changes for the
database schema, data in the database, and application. Seedpod’s server application is
completely model-independent, which means regardless of changes to the model the
server application does not need to be changed. The database definition is auto-generated
from the model. In order for Seedpod to evolve seamlessly, it needs the ability to translate
Protégé model changes into relational database changes. Changes involving changing the
webapp widgets are straightforward. Changes involving changing the data table structures,
such as adding an attribute, are more involved. Techniques for evolving relational
databases can be incorporated (Hick & Hainaut, 2003; Dominguez, Lloret, & Rubio, 2002).

Another approach to evolving MDA systems follows the principals that encourage
an agile data warehouse to allow users “easily ingest, digest, produce and adapt data at a
rapid pace (Cohen, Dolan, Dunlap, Hellerstein, & Welton, 2009).” A need for Seedpod to

evolve comes up when a new experiment protocol is developed. It may make more sense to

105

create a separate data management system instead of changing the existing one. Within
the same laboratory, an existing model may be reused and modified to create a new model.
For example, LRL model definition for Subject can be reused when a new protocol subject
by creating a new child class of Subject as shown in Figure 6.1. The database server and
web application server for Seedpod can both be reused with small modifications to
connectivity configuration. Following this approach, the scientific user can get started
with collecting new data quickly. When one needs to analyze the new database with the
older database(s), integration techniques such as mediators or distributed database
management systems can be used (Ludischer, Gupta, & Martone, 2003; Tang, Kadiyska, Li,

Suciu, & Brinkley, 2003; Hachem, Gennert, & Ward, 1993).

1"& stevens_v1.2 Protégé 3.3.1 {filenC:\D
Eile EIE Elo‘jecl: Mndowu Iools Help B

Ded +« B8 8% &

® Classes | mm SIotsJCE;F‘oMrr;s;’ @ Instances Ia

CLASS BROWSER F
1o

For Prmpect @ stevens_vl 2

Class Hieratchy T T
110 - PN |
el SYSTEM CLASS
& Family_Study
= [© Subject I
= @ Autoimmune_Disease_Subject
& PLE_Subject
@& SOC_Subject

Ielz

"

-

@ RAY_Subject In

@ THY_Subject -

& NOP_Subject =

& DAl 1O]
-

® Medication Info

Figure 6.1. LRL implements several types of subjects for various experiment protocols.
When more subjects are needed for new experiments, a new class can be added as a
child to Autoimmune_Disease_Subject.

106

R1 R2 R3 R4 R5

Data Multi- Sclentist user | Low Ease of | Total

management | user involvement | development | system

features remote time and | evolution

access technical cost
S1: Custom
solutions 3 3 1 1 1 9
S2: COTS 2 2 2 1 2
(Excel/Affymetrix) (1/3) (1/3) (3/1) (1/1) 3/1) 9
§3: Tool kits 3 3 1 2 1 10
G“!

S4: Model-driven 2 3 2 3 3 13
Seedpod 1 3 2 3 3 12

Figure 6.2, Comparing Seedpod to existing solutions extending Figure 3.9 in Section 3.5.

Finally, the third approach takes a middle ground from the previous approaches.
The user first creates a new model that would work for the new data. Seedpod can help to
auto-generate a new database from the model. Then a data engineer would apply data
integration techniques to export data from the old database and import into the new
database. Again, nothing needs to be done to Seedpod’s server application.

Seedpod does not solve the evolution problem but it has shrunken a big part of the
problem with its model-independent server application. The above three approaches are

worthy of investigating for future work.

6.3. Conclusion

Figure 6.2 extends Figure 3.9 to include Seedpod in comparison with existing

solutions. Seedpod performs similarly to existing MDA solutions in meeting R2, R3, and R4,

107

but falls short in its features (R1). Seedpod was developed by one graduate student
compared to teams of experienced engineers. Both Teranode and Portofino support
advanced workflow modeling and management which Seedpod does not. All three MDA
solutions ease the complexity of system evolution but that is speculative.

Seedpod is a prototype that has been evaluated based on the author’s critical
analysis against requirements listed in Chapter 2. Seedpod meets R1-R4 for the most part,
and lays down the foundation for R5. Seedpod needs to be evaluated with real world

problems and users. It may then mature through more iterations of refinement.

108

7. CONCLUSION

This thesis has described a model-driven LIMS called Seedpod. It is an approach to
building LIMS using a formal knowledge model. A methodology was developed to
automatically transform a knowledge model in Protégé to a relational model. The resulting
LIMS is a web application that dynamically generates the web-based GUI using the
knowledge model and meta-data from the transformation. The web application allows
users to manage and browse data that is stored in a database. A plug-in framework allows
developers to extend and customize Seedpod.

Seedpod has the ability to manage large complex multimedia data sets. Users can
access data anywhere with an internet access. The methodology encourages the users to
work closely with the developers on modeling the LIMS. The resultant cost-saving LIMS
can be quickly developed by simply creating a Protégé model and without writing any
program code. In the future, Seedpod may lower the burden of system evolution by
allowing the user to only make changes to the LIMS model. This chapter concludes the

thesis with its contributions and future work.

7.1, Contributions

1) Knowledge-model-driven approach to building LIMS: Very few MDA LIMS exist.

None of them uses a formal knowledge model to represent the LIMS. This

project uses an open-source knowledge model developed using Protégé to

2)

3)

109

capture information about a LIMS. Naive users without programming skills can
create a LIMS with a relational database and a web application by simply
creating a descriptive model. The knowledge model is machine-readable; the
rest of the LIMS components are driven by the model through either automatic
code translation or querying of the model. The use of a formal knowledge model
opens the opportunity to sharing and ease of integration with other knowledge
bases.

Automatic transformation of Protégé model to relational model: A methodology
is developed to automatically transform the knowledge model in Protégé to a
relational model written in standard SQL data definition language (DDL). The
resulting DDL can be used directly to create a relational database. This
automatic translation is fast and separates the user from the technical
complexity of developing a relational data model from the database. Changing
the model during development using the Protégé GUI is much easier than
making changes to a relational database DDL.

Domain independent LIMS: The LIMS web application is domain independent. In
other words, it can be deployed for various laboratories in different research
studies, The content of the LIMS is provided and informed by the knowledge
model and meta-data from the transformation. As demonstrated by Figure 7.1,
SUR and LRL each have their own models. The transformation and application
components merely query the model and the database without any laboratory

specific code. The LIMS engine is built once but can be used many times.

110

Single Unit Lupus Study
Recording Model Model

i | !

Transteormation
SUR b S~ Lupus

Manual

Database : Database
o Stetr ver
: ?.L_’ - - i % mu
o B ' _ eod~~d
l _ .
' SUR LIMS ! S
| WebuUl | ! - Lupus LIMS
1
!

~ Web UI

25

Figure 7.1. The transformation and Seedpod application server are both domain-
independent.

4) Cost saving: This model-driven approach to building LIMS saves time,
development effort, and ultimately cost for research scientists. Required
expertise to getting a LIMS running is less. It allows scientists to quickly create a
system and start collecting data in a database without worrying about how the

data will be used. Informatics teams can better support multiple research labs in

an institution level.

7.2. Future Work
The following areas should be undertaken as future work.
1) System evolution: System evolution in a MDA LIMS is not well studied. The MDA

approach makes the problem simpler by extracting changes to a system into

2)

3)

4)

5)

111

changes in a model. Future work is needed to test and compare the three
approaches described in 6.2.5.

Workflow. Users cannot model workflow in Seedpod. Teranode (see 3.4.1)
integrates the data model with workflow model into one intuitive unit. This idea
can be explored and incorporated into Seedpod, creating an IDE mentioned in
6.2.3 that incorporates workflow modeling with data modeling. This IDE would
then run on top of Protégé’s meta-model and replace the current Protégé GUL
Query. Seedpod focuses on data entry as opposed to data analysis. However, it
should provide simple basic query functionalities. An interesting problem would
be to allow users to phrase their queries through the model and then translate
that query to real database query.

Data exporter/importer: For the purpose of sharing data with collaborators or
analysis data using tools with specific data standards, Seedpod should develop a
plug-in framework for developers to export and import data sets. For example, a
program developer could write an exporter that writes SUR’s brain MRI data
and meta-data into other MRI data standards for visualization.

Integrating Seedpod LIMS model with knowledge bases: Experiment LIMS model
can be integrated with experiment protocols that are also captured in
knowledge models. The LIMS model can use other scientific knowledge bases for
references or controlled vocabulary data input. Alternatively, data generated
through the experiments may serve as evidence to other knowledge bases. The

LIMS model can be re-used in ways that will need to be explored.

112

Seedpod is a first prototype LIMS building system that incorporates novel
techniques for knowledge-model-driven LIMS construction. It is hoped that Seedpod will

lead the way for future production systems.

113

BIBLIOGRAPHY

ADInstruments. (n.d.). Data Acquisition Software Systems - ADInstruments. Retrieved 2006,

from ADInstruments: ADInstruments

Ambler, S. (2000, July). Mapping Objects to Relational Databases. Retrieved 2010, from Agile
Data: http://www.agiledata.org/essays/mappingObjects.html

Anderson, N., Lee, S., Brockenbrough, S., Minie, M., Fuller, S., Brinkley, J., et al. (2007, july-
Aug). Issues in Biomedical Research Data Management and Analysis: Needs and

Barriers.] Am Med Inform Assoc, pp. 478-488.

Arnstein, L., Grimm, R., Hung, C.-Y., Kang, J. H., LaMarca, A., Look, G., et al. (2002). System
Support for Ubiquitous Computing: A Case Study of Two Implementations of

Labscape. 2002 International Conference on Pervasive Computing. Zurich.

Arnstein, L., Hung, C.-Y., Franza, R., & Zhou, Q. H. (2002). Labscape: A Smart Environment
for the Cell Biology Laboratory. IEEE, pp. 13-21.

Atzeni, P., Cappellari, P., & Bernstein, P. A. (2005). ModelGen: Model Independent Schema
Translation. ICDE '05 Proceedings of the 21st International Conference on Data

Engineering. Washington DC: IEEE Computer Society .

Bernstein, P. A. (2003). Applying Model Management to Classical Meta Data Problems.
Proceedings of the 2003 CIDR Conference.

Brinkley, J. (2005). UW Integrated Brain Project Cortical Stimulation Mapping Database.
Retrieved from Brain Map: http://bmap.biostr.washington.edu/

Brown, A. W. (2004). Model driven architecture: Principles and practice. Software System
Model, pp. 314-327.

http://www.agiledata.org/essays/mappingObjects.html
http://bmap.biostr.washington.edu/

114

Cho, H., Corina, D., Brinkley, J., Ojemann, G., & Shapiro, L. (2005). A New Template Matching
Method using Variance Estimation for Spike Sorting. 2nd International IEEE EMBS
Conference on Neural Engineering, (pp. 225 - 228).

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New
Analysis Practices for Big Data. Proc. VLDB Endow, (pp. 1481-1492).

Dominguez, E., Lloret, J., & Rubio, A. L. (2002). An MDA-Based Approach to Managing

Database Evolution.

Drexler, E. (2008, 10 25). The Data Explosion and the Scientific Method. Retrieved 2010,
from Metamodern: http://metamodern.com/2008/10/25/the-data-explosion-and-
the-scientific-method/

Entity-attribute-value model (2010). Retrieved 2010, from Wikipedia:
http://en.wikipedia.org/wiki/Entity-attribute-value_model

Estrella, F., Kovacs, A., Goff, J.-M. L., McClatchey, R., & Toth, N. (2001). Meta-Data Objects as
the Basis for System Evolution. CMS Conference Report, (pp. 1-7).

Estrella, F., Kovacs, Z., Goff,]J.-M. L., & McClatchey, R. (2001). Model and Information
Abstraction for Description-Driven Systems. Computing in High Energy and Nuclear

Physics. Beijing,

Fogh, R. H., Bouche, W., Vranken, W. F., Pajon, A., T.]., Bhat, T. N,, et al. (2005). A framework
for scientific data modeling and automated software development. Bioinformatics ,

pp- 1678-1684.

Fong, C., & Brinkley,]. (2006). Customizable Electronic Laboratory Online (CELO): A Web-
based Data Management System Builder for Biomedical Research Laboratories.

AMIA Conference Proceedings, (p. 922). Seattle.

http://metamodern.com/2008/l0/25/the-data-explosion-andthe-scientific-method/
http://metamodern.com/2008/l0/25/the-data-explosion-andthe-scientific-method/
http://en.wikipedia.org/wiki/Entity-attribute-value_model

115

Free Software Foundation. (2007). The GNU General Public License 3.0 - GNU Project- Free
Software Foundation. Retrieved 2010, from GNU:
http://www.gnu.org/licenses/gpl.html

Gardner, D., & Shepherd, G. M. (2004). A Gateway to the Future of Neuroinformatics.

Neuroinformatics , pp. 271-4.

Gennari, J. H., Mork, P., & Li, H. (2005). Knowledge Transformations between Frame
Systems and RDB Systems. 3rd International Conference on Knowledge Capture (K-
CAP05), (pp. 197-198). Banff, Alberta, Canada.

Gennari, J. H., Musen, M. A,, Fergerson, R. W., Grosso, W. E., Crubzy, M., Eriksson, H., et al.
(2003, January). The evolution of Pro-tégé: an environment for knowledge-based
system development. International Journal of Human-Computer Studies , pp. 89-

123.

Gitzel, R., & Korthaus, A. (2004). The Role of Metamodeling in Model-Driven Development. .
Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and

Informatics. Orlando.

Goodman, N., Rozen, S., Stein, L., & Smith, A. (1998). The LabBase System for data
management in large scale biology research laboratories. Bioinformatics , pp. 562-

574.

GraphLogic. (2009). GraphLogic, Inc. Retrieved 2010, from GraphLogic:
http://www.graphlogic.com/

Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A. S., DeWitt, D., & Heber, G. (2005).

Scientific Data Management in the Coming Decade. Redmond: Microsoft Research.

Hachem, N., Gennert, M., & Ward, M. (1993). Distributed Database Management for
Scientific Data Analysis. Int. Workshop on Global GIS.

http://www.gnu.org/licenses/gpl.html
http://www.graphlogic.com/

116

Hick, J.-M., & Hainaut, J.-L. (2003). Strategy for Database Application Evolution: the DB-
MAIN Approach. Lecture Notes in Computer Science , pp. 291-306.

Hull, R., & King, R. (1987). Semantic database modeling: survey, applications, and research

issues. ACM Computing Surveys, pp. 201-260.

I-min A. Chen, V. M. (1995). An Overview Of The Object Protocol Model (opm) And The Opm
Data Management Tools. /nformation Systems , pp. 393--418.

Ipad. (2010). Ipad ELN - Electronic Lab Notebook . Retrieved 2010, from Ipad ELN:
http://www.ipadeln.com/

Jakobovits, R. M., Rosse, C., & Brinkley, J. F. (2002). WIRM: an open source toolkit for
building biomedical web appli-cations. 9(6), 557-70.

Jakobovits, R., Soderland, S. G., Taira, R., & Brinkley, J. (2000). Requirements of a Web-Based
Experiment Management System. Proceedings of AMIA Symposium 2000, (pp. 374-

8).

Kell, D., & Oliver, S. (2004). Here is the evidence, now what is the hypothesis? The
complementary roles of inductive and hypothesis-driven science in the post-

genomic era. Bioessays , 99-105.

Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: The Model Driven
Architecture(TM): Practice and Promise. Addison-Wesley.

Kotter, R. (2001). Neuroscience Databases: Tools for Exploring Brain Structure-Function

Relationships. Philosophical transactions of the Royal Society of London , 1111-20.

LabCentrix. (2007). LabCentrix - LIMS Consulting Services & Technology Solutions.
Retrieved 2010, from LabCentrix: http://www.labcentrix.com/

http://www.ipadeln.com/
http://www.labcentrix.com/

117

Lacroix, Z., & Critchlow, T. (2003). Bioinformatics: Managing Scientific Data. Morgan

Kaufmann.

Larson, E. (2008, 12 5). Data-driven Science in the Age of Exponential Information Growth.
Retrieved 2010, from NowPublic: http://www.nowpublic.com/tech-biz/data-

driven-science-age-exponential-information-growth
Lazar, J. (2000). User-Centered Web Development, Jones & Bartlett Learning.

Liu, C., Orlowska, M., & Li, H. (1997). Realizing Object-Relational Databases by Mixing Tables
with Objects. International Conference on Object Oriented Information Systems,

(pp. 335-346). Brisbane, Australia.

Ludischer, B., Gupta, A., & Martone, M. (2003). A Model-Based Mediator System for
Scientific Data Management. In Z. Lacroix, & T. Critchlow, Bioinformatics: Managing

Scientific Data (pp. 335--370). Morgan Kaufmann,

ManyDesigns. (2010). Home of ManyDesigns Portofino. Retrieved 2010, from ManyDesigns:

http://www.manydesigns.com/Home.html
MDA. (2010). Retrieved 2010, from Object Management Group: http://www.omg.org/mda/

Minsky, M. (1974). A framework for Representation Langauge. Retrieved 2010, from
http://web.media.mit.edu/~minsky/papers/Frames/frames.html

Musen, M. A. (1998, November). Domain Ontologies in Software Engineering: use of protege

with the EON architecture. Methods of Information in Medicine , pp. 540-550.

Nadkarni, P., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., & Miller, P. (1999).
Organization of Heterogeneous Scientific Data Using the EAV/CR Representation.

JAMIA , pp. 478-493.

http://www.nowpublic.com/tech-biz/datadriven-science-age-exponential-information-growth
http://www.nowpublic.com/tech-biz/datadriven-science-age-exponential-information-growth
http://www.manydesigns.com/Home.html
http://www.omg.org/mda/
http://web.media.mit.edu/~minsky/papers/Frames/frames.html

118

Niyomthum, K., & Chittayasothorn, S. (2003). A Transformation from An Object Database to
an Object Relational Database. Proceedings IEEE SoutheastCon (pp. 7-11). IEEE.

Noah, S. A., & Lloyd-Williams, M. (1995, December). A selective review of knowledge-based

approaches to database design. Information Research.

Noy, N., & McGuinness, D. (2001). Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford : Citeseer.

Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., & Musen, M. (2001). Creating
Semantic Web Contents with Protege-2000. /EEE Intelligent Systems , pp. 60-71.

Ojemann, G., Schoenfield-McNeill, J., & Corina, D. (2002, January). Anatomic subdivisions in
human temporal cortical neuronal activity related to recent verbal memory. Nature

Neuroscience, pp. 64-71.

Paszko, C., & Turner, E. (2002.). Laboratory Information Management Systems. New York:

Marcel Dekker.

Pittendrigh, S., & Jacobs, G. (2001). NeuroSys, A Semistructured Laboratory Database.

Neuroinformatics Journal , pp. 167-178.

Protege Developer Documentation. (n.d.). Retrieved 11 11, 2009, from

http://protege.stanford.edu/doc/pdk/plugins/project_plugin.html

Psychology Software Tools, Inc. (n.d.). Psychology Software Tools: E-Prime application
suite for psychology experiment design, implementation, and analysis. Retrieved
2006, from Psychology Software Tools, Inc: http://www.pstnet.com/products/e-

prime/

Ramakrishnan, R., & Gehrke, J. (2002). Database Management Systems. McGraw-Hill .

http://protege.stanford.edu/doc/pdk/plugins/project_plugin.html
http://www.pstnet.com/products/eprime/
http://www.pstnet.com/products/eprime/

119

Rubin, D., Shafa, F., Oliver, D., Hewett, M., & Altman, R. (2002). Representing Genetic
sequence data for pharmacogenomics: an evolutionary approach using ontological

and relatioinal models. Bioinformatics , pp. $207-5215.
Schmidt, D. C. (2006, February). Model-Driven Engineering, /EEE, pp. 25-31.

SQL:1999. (2011, January 12). Retrieved 2011, from Wikipedia:
http://en.wikipedia.org/wiki/SQL:1999

Stanford Center for Biomedical Informatics Research. (2010). What is Protégé-20007
Retrieved 2010, from Protégé: http://protege.stanford.edu/doc/users_guide/

Structural Informatics Group. (n.d.). Retrieved 2010, from Structural Informatics Group:

http://sig.biostr.washington.edu/

Swenson, M. (2005 , 5). Experiment Design Automation: A Potential Solution for
Fragmented Informatics in Biopharmaceutical Research and Development.
Retrieved 2006, from Bioscienceworld

http://www.bioscienceworld.ca/ExperimentalDesignAutomation

Tang, Z., Kadiyska, Y., Li, H., Suciu, D., & Brinkley, J. F. (2003). Dynamic XML-Based
Exchange of Relational Data: Application to the Human Brain Project. AMIA Annu
Symp Proc, (pp. 649-653).

Teranode. (2010). Teranode Incorporated, Retrieved 2010, from Teranode:

http://teranode.com/

The Apache Software Foundation. (2011). The Apache Web Server Project. Retrieved 2011,
from Apache: http://httpd.apache.org/

Wikipedia: Ajax. (n.d.). Retrieved 2010, from
http://en.wikipedia.org/wiki/Ajax_(programming)

http://en.wikipedia.Org/wiki/SQL:1999
http://protege.stanford.edu/doc/users_guide/
http://sig.biostr.washington.edu/
http://www.bioscienceworld.ca/ExperimentalDesignAutomation
http://teranode.com/
http://httpd.apache.org/
http://en.wikipedia.org/

120

Wikipedia: Java Platform Enterprise Edition. (n.d.). Retrieved 2010, from
http://en.wikipedia.org/wiki/Java_Platform, Enterprise_Edition

Wikipedia: Web application. (2009, September 3). Retrieved September 3, 2009, from
http://en.wikipedia.org/wiki/Web_application

XMIBackendTechnicalBackground. (2006). Retrieved 2010, from Protege Wiki Page:
http://protege.cim3.net/cgi-bin/wiki.pl?XMiBackendTechnicalBackground

http://en.wikipedia.org/wiki/java_Platform,_Enterprise_Edition
http://en.wikipedia.org/wiki/Web_application
http://protege.cim3.net/cgi-bin/wiki.pl7XMIBackendTechnicalBackground

121

CURRICULUM VITAE

Hao Li

EDUCATION

University of Washington
= PhD in Biomedical and Health Informatics (2011).
e Awarded National Library of Medicine Training Grant (June 2004 - June
2007).

» BS in Biochemistry and Neurobiology. (2001).

TECHNICAL AND RESEARCH EXPERIENCES

MITRE Corporation McLean, VA
Senior Database Technology Software Engineer January 2008 - present

» Data integration engineer

o Develop system specifications for distributed database systems.
e Develop common vocabulary for large military databases.
e Develop workflow process for data integration.

» Database and software development in OpenlI®

2 Openll is an open source data integration framework and application developed at
MITRE in collaboration with Google and other academic institutes. Harmony and Unity are
modules of Openll. http://openii.sourceforge.net/

122

e Develop schema importers and exporters for Openll
e Develop a database and API for multiple flight sensor requesting messages.
e Key developer of Unity, a semi-automated vocabulary generation

application in OpenlI.
* A liaison between customers and MITRE research project

e Customize Harmony to meet the needs of a large military customer.
e Contribute to Openll research and development from real user experiences.
» Technology advisor to the National Center Research Resources at National Institute
of Health -
e Investigate current research and development in Biomedical Informatics.
e Publish technology review papers.

» Technology advisor to the Neuro Names knowledge base design at George Mason

University
Structural Informatics Group, University of Washington Seattle, WA
Research Assistant September 2001 - December 2007

» Project Seedpod (PhD dissertation project)
e Design and development of a general purpose web-based solution that helps
scientists manage data in a relational database by simply modeling the lab

data without the need of computer programming. Model using Protégé-

123

2000, model-driven web-based application implemented in JAVA and
PostgreSQL.
= XBrain Project (CS graduate level database course project)
e Developed database infrastructure for publishing human brain data stored

in relational databases dynamically in XML using SilkRoute.

Teranode Corporation Seattle, WA
Consulting Engineer Internship June 2005 - December 2005
= Developed an integrated and automated Teranode platform solution to manage
samples and workflow at University of Washington Center of Ex'pression Array.

Duties included gathering user requirements, requirement analysis, data and

workflow modeling, and solution customization.

Next Generation Internet Project, University of Washington Seattle, WA
Undergraduate Internship/ Student Programmer June 2000 - December 2001
= Designed and developed a web-based information management application to
manage case presentation and images, which enabled the Seattle Cancer Care
Alliance weekly multi-location tumor teleconferences. Application implemented

using PHP and MySQL database.

124

PUBLICATIONS

* Rosenthal A, Mork P, Li H, Stanford J, Koester D, Reynolds P. Cloud Computing: A
New Business Paradigm for Biomedical Informatics. Not yet in print. Accepted for
publication in Journal of Biomedical Informatics, April 2009.

= Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D, Selligman L. The Role of
Schema Matching in Large Enterpriese. CIDR 2009, Monterey, CA.

= Mork P, Stanford J, Li H, Smith K. Sharing Data Containers in Translational
Research. Proceedings of AMIA Spring Congress, 2008, Phoenix, AZ.

* Li H, Gennari JH, Brinkley JF. Model Driven Laboratory Information Management
Systems. Proceedings of the AMIA Conference, 2006, Washington, DC.

= Gennari,], Mork, P, and Li H Knowledge Transformations between Frame Systems
and RDB Systems. Proceedings of the K-CAP05 Conference, 2005.

* LiH, Brinkley JF, and Gennari J. Semi-automatic Database Design for Neuroscience
Experiment Management Systems. Proceedings of MedInfo 2004, San Francisco, CA.

* Tang Z, Kadiyska Y, Li H and Suciu, D and Brinkley, JF (2003) Dynamic XML Based
Exchange of Relational Data: Application to the Human Brain Project. In
Proceedings, American Medlical Informatics Association Fall Symposium. In press.

= Li H, Lober WB, et al. Iterative Development of a Web Application to Support
Teleconferencing of a Distributed Tumor Board. In Proceedings, AMIA 2002, San
Antonio, TX.

= Lober WB, Li H, Trigg LJ, Stewart BK, Chou D. Web Tools for Distributed Clinical Case

Conferencing. Proceedings of AMIA Annual Symposium, 959, 2001.

125

SCHOLARLY ACTIVITIES

= Reviewer for Journal of Biomedical Informatics (2010)
= Program Committee member of Data & Knowledge Engineering Journal Elsevier
special issue on Contribution of Ontologies in Designing Advanced Information

Systems (2009)

HOBBIES AND INTERESTS

= Travel, photography, rowing, bicycling, hiking, cooking, art, coffee.
» Chinese dance and ballet. A dance performer at Asian Art Performing Center (1994-

2006)

